Type II deiodinase (D2) activates thyroid hormone by converting thyroxine (T4) to 3,5,3′-triiodothyronine (T3). This allows plasma T4 to signal a negative feedback loop that inhibits production of thyrotropin-releasing hormone (TRH) in the mediobasal hypothalamus (MBH) and thyroid-stimulating hormone (TSH) in the pituitary. To determine the relative contributions of these D2 pathways in the feedback loop, we developed 2 mouse strains with pituitary- and astrocyte-specific D2 knockdown (pit-D2 KO and astro-D2 KO mice, respectively). The pit-D2 KO mice had normal serum T3 and were systemically euthyroid, but exhibited an approximately 3-fold elevation in serum TSH levels and a 40% reduction in biological activity. This was the result of elevated serum T4 that increased D2-mediated T3 production in the MBH, thus decreasing Trh mRNA. That tanycytes, not astrocytes, are the cells within the MBH that mediate T4-to-T3 conversion was defined by studies using the astro-D2 KO mice. Despite near-complete loss of brain D2, tanycyte D2 was preserved in astro-D2 KO mice at levels that were sufficient to maintain both the T4-dependent negative feedback loop and thyroid economy. Taken together, these data demonstrated that the hypothalamic-thyroid axis is wired to maintain normal plasma T3 levels, which is achieved through coordination of T4-to-T3 conversion between thyrotrophs and tanycytes.

The thyroid hormone-inactivating type III deiodinase is expressed in mouse and human - cells and its targeted inactivation impairs insulin secretion.

Mayrin C. Medina, Judith Molina, Yelena Gadea, Alberto Fachado, Monika Murillo, Gordana Simovic, Antonello Pileggi, Arturo Hernandez, Helena Edlund, and Antonio C. Bianco Endocrinology. Oct, 2011. PMID: 21828183.

Download PDF