The three iodothyronine deiodinases catalyze the initiation (D1, D2) and termination (D3) of thyroid hormone effects in vertebrates. A recently conceived 3-dimensional model predicts that these enzymes share a similar structural organization and belong to the thioredoxin (TRX) fold superfamily. Their active center is a selenocysteine-containing pocket defined by the β1-α1-β2 motifs of the TRX fold and a domain that shares strong similarities with the active site of iduronidase, a member of the clan GH-A fold of glycoside hydrolases. While D1 and D3 are long-lived plasma membrane proteins, D2 is an endoplasmic reticulum resident pro- tein with a half-life of only 20min. D2 inactivation is mediated by selective UBC-7-mediated conjugation to ubiquitin, a process that is accelerated by T4 catalysis, thus maintaining local T3 homeostasis. In addition, D2 inter- acts with and is a substrate of the pVHL-interacting deubiquitinating enzymes (VDU1 and VDU2); thus deubiquitination regulates the supply of active thyroid hormone in D2-expressing cells.

Triplets! Unexpected Structural Similarity Among the Three Enzymes That Catalyze Initiation and Termination of Thyroid Hormone Effects.

Antonio C. Bianco. Arquivos Brasileiros de Endocrinologia & Metabologia. October 20, 2003.

Download PDF