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ABSTRACT Thyroid hormone (TH) molecules enter cells via membrane transporters and, depending on the cell type, can be activated (i.e.,

T4 to T3 conversion) or inactivated (i.e., T3 to 3,39-diiodo-L-thyronine or T4 to reverse T3 conversion). These reactions are catalyzed by the

deiodinases. The biologically active hormone, T3, eventually binds to intracellular TH receptors (TRs), TRa and TRb, and initiate TH

signaling, that is, regulation of target genes and other metabolic pathways. At least three families of transmembrane transporters, MCT,

OATP, and LAT, facilitate the entry of TH into cells, which follow the gradient of free hormone between the extracellular fluid and the

cytoplasm. Inactivation or marked downregulation of TH transporters can dampen TH signaling. At the same time, dynamic modifications in

the expression or activity of TRs and transcriptional coregulators can affect positively or negatively the intensity of TH signaling. However,

the deiodinases are the element that provides greatest amplitude in dynamic control of TH signaling. Cells that express the activating

deiodinase DIO2 can rapidly enhance TH signaling due to intracellular buildup of T3. In contrast, TH signaling is dampened in cells that

express the inactivating deiodinase DIO3. This explains how THs can regulate pathways in development, metabolism, and growth, despite

rather stable levels in the circulation. As a consequence, TH signaling is unique for each cell (tissue or organ), depending on circulating TH

levels and on the exclusive blend of transporters, deiodinases, and TRs present in each cell. In this review we explore the key mechanisms

underlying customization of TH signaling during development, in health and in disease states. (Endocrine Reviews 40: 1 – 48, 2019)

M ultiple processes and systems in vertebrates are
sensitive to the thyroid hormones (THs) T and

T (, ). However, circulating TH levels are remarkably
stable, which is difficult to reconcile with the idea that
important biologic processes are initiated or terminated
by T, the most biologically active TH. Historically, this
was explained by the concept of the “permissive effect” of
TH; TH was thought to be necessary but not sufficient to
initiate critical biologic events (). Progress in our un-
derstanding of TH action illuminated this apparent in-
consistency, with the discovery that a number of cellular
and molecular processes such as gene transcription are
indeed highly sensitive to T action per se (, ). The work
of several groups resolved the logistical hurdle of steady
T plasma levels by demonstrating the existence of “local”
mechanisms that function within target cells to rapidly
modulate TH signaling up or down in the short- or long-
term, despite relatively stable circulating levels of T

(–). The signaling TRIAD, that is, transmembrane
transport, intracellular deiodination, and TH receptor
(TR)–mediated gene transcription, constitutes the basis
for cellular customization of TH signaling [see Ref. ()
for a comprehensive review ofmethods and experimental
approaches to study the signaling TRIAD].

Transmembrane transport
The cellular lipid bilayer that forms the plasma
membrane is not significantly permeable to T or T;
both molecules enter and exit cells through specific
transporters that are embedded in the plasma mem-
brane (–). Knowledge about these transporters
originated from work with L- and T-type amino acid
transporters (), and eventually led to identification
of monocarboxylate transporter (MCT) , a highly
effective T and T transporter (). The homologous
molecule, MCT, is also capable of T transport but

ISSN Print: 0163-769X

ISSN Online: 1945-7189

Printed: in USA

Copyright © 2019

Endocrine Society

Received: 30 November 2018

Accepted: 15 March 2019

First Published Online:

29 April 2019

doi: 10.1210/er.2018-00275 https://academic.oup.com/edrv 1

REVIEW

http://orcid.org/0000-0001-7737-6813
http://orcid.org/0000-0001-7737-6813
http://dx.doi.org/10.1210/er.2018-00275
https://academic.oup.com/edrv


less effective thanMCT for T (). In addition to the
MCTs, at least two other families of TH transporters
exist: the organic anion-transporting polypeptide
(OATP) family, highly expressed in the brain with
substrate specificity for T, and the L-type amino acid
transporters (LATs)  and , which transport both T
and T but with relative low affinity ().

Intracellular deiodination
Once inside the cells, TH molecules can be activated
or inactivated by the deiodinase group of enzymes (, ,
, ) (Fig. ). These are dimeric integral membrane
selenoproteins composed of a single N-terminal trans-
membrane segment connected to a larger globular do-
main with a selenocysteine-containing active center
embedded in a thioredoxin-like fold (–) (Fig. ).
Deiodinases modify the biologic activity of TH mole-
cules, either by activating T via outer ring deiodination
[type II iodothyronine deiodinase (D)] or inactivating
T and T via inner ring deiodination [type III iodo-
thyronine deiodinase (D)], thus modulating T levels
inside target cells. DIO is primarily expressed in the
brain, pituitary gland, and brown adipose tissue (BAT),
whereas DIO expression predominates in most fetal
tissues, subsiding after birth (, ). In adults, brain,
placenta, skin, and pancreatic b-cells (, ) are the
tissues with highest D activity. However, D can be
expressed ectopically in almost any tissue during critical
illness (, ). A third deiodinase gene, DIO, is
expressed in liver and kidney; type I iodothyronine
deiodinase (D) is capable of both outer and inner ring
deiodination. However, D exhibits three orders of
magnitude lower affinity for T. Whereas D plays a
role in thyroid economy (), its low affinity for T and
presence in the plasma membrane precludes it from
significantly affecting local TH signaling; its products,
T and reverse T (rT), rapidly exit the cells and enter
the systemic circulation (, ).

TR-mediated signaling
Two types of T receptors, TRa and TRb, medi-
ate most TH effects via interaction with transcrip-
tional modulators to control multiple gene sets ().
Tissues vary in their expression levels of TRa and
TRb. For example, brain, heart, intestine, skeletal
muscle (SKM), and skeleton are known for their
predominance of TRa, whereas TRb expression
occurs primarily in liver and pituitary gland. In genes
that are positively regulated by T, unoccupied TRs
are mostly bound to thyroid responsive elements
(TREs) near the promoter region where they form
complexes with transcriptional repressors, reducing
the velocity at which target genes are transcribed. T
binding to TRs might direct additional TRs to
specific DNA sites. Furthermore, binding to T shifts
the affinity of TRs from corepressors to coactivators,
not only de-repressing but also transactivating tran-
scription of target genes (). In addition to tran-
scriptional effects, TRs might also function via a
noncanonical pathway that does not require binding
to TREs (). Although complete loss of canonical
TH action is observed in knock-in mice with a TR
mutation that abrogates binding to DNA, several
important TH-dependent physiological effects are
preserved, including heart rate, body temperature,
blood glucose, and triglyceride concentration, in-
dicating that they could be affected by noncanonical
TR signaling ().

The functions of all three components of the
signaling TRIAD are intertwined and constitute the
basis for localized control and tissue specificity dis-
played by TH action, with most tissues having their
own unique blend of transporters, deiodinases, and
TRs. The focus of this article is to review these
mechanisms in the context of existing paradigms of
dynamic control of TH signaling and their relevance to
human disease.

Circulating T3 Underlies TH Signaling in
Most Tissues

Whether a cell or tissue responds to T depends on
the expression of TH transporters and the presence
of TRs, which may vary from very few (minimally

responsive cells) to as many as  TR molecules per
cell, as seen in liver, pituitary, and BAT (, ). TRs
display relatively high affinity and low capacity for T
and, as T levels increase, T–TR binding increases
following an asymptote curve that reflects higher
TR occupancy and consequently greater intensity of

ESSENTIAL POINTS

· Thyroid hormone (TH) signaling is customized to different cell types

· Customization in TH signaling is mediated by TH transporters, deiodinases, and TH receptors

· Deiodinases provide the greatest amplitude in dynamic control of TH signaling

· TH signaling is customized during development to ensure that cells are exposed to T3 at the appropriate timing, which is
different among tissues

· Critical illness is associated with changes in TH signaling, which are viewed as an adaptive phenomena
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TH-dependent biologic effects. This relationship has
been demonstrated in isolated cell nuclei, in intact
cells, and in whole animals (–); it is also evident in
transgenic mouse models that assess TH signaling
through a reporter gene (, ).

Based on the known TR affinity for T (Ka of ~


L/M) and euthyroid plasma levels of free T (FT;
~2 M), it is estimated that about half of the TR
pool in liver and kidney cells is occupied with T
derived from the circulation, a figure that has been
confirmed experimentally (, ). In other words, the
circulating level of FT in euthyroid individuals
provides the cell nucleus with sufficient T to occupy
about half of the TRs, respectively activating or
suppressing genes that are positively or negatively
regulated by T, eventually leading to downstream
biologic effects. The other half of the TRs in these
organs remain empty but do exert biologic effects by
repressing genes that are positively regulated by T.
Thus, the presence of TRs and the balance between
occupied and unoccupied TRs are what define the type
and intensity of T-dependent biologic effects in any
given cell or tissue.

Circulating T levels are important determinants of
TH signaling. Indeed, in most tissues the level of TR
occupancy, expression of T-responsive genes, and
downstream biologic effects are greatly influenced by
circulating T levels. In other words, as long as TH
transmembrane transporters are available, T from
plasma will enter cells at levels that occupy half of the

TR pool. Conversely, a drop in plasma T will reduce
TR occupancy in most tissues as well. For example,
studies in rats estimate that a mere % drop in plasma
T levels reduces liver and kidney TR occupancy by
~% (). These changes are of course magnified in
patients with hypothyroidism or hyperthyroidism in
whom plasma T levels may fluctuate markedly. As a
counterpoint, there are instances in which TR occu-
pancy does not reflect the levels of plasma T. For
example, in cells that express DIO, intracellular T
levels are higher than expected from circulating T
(). In contrast, in cells that are deficient in func-
tional TH transporters, as for example in the Allan-
Herndon-Dudley syndrome, extracellular T only
minimally enters cells, and hence there is low TR
occupancy (, ). Additionally, in cells that express
DIO, T can enter but could be inactivated before
reaching TRs (, ).

It is estimated that in healthy adult individuals
~ mg of T and  mg of T are produced daily
(Fig. ). About  mg/d T is secreted directly from the
thyroid gland into the circulation, whereas the re-
mainder of  mg/d is produced outside the thyroid
parenchyma via T deiodination (). Thyroidal T
derives from thyrocyte digestion of iodinated thyro-
globulin; despite the existence of ~ tyrosine residues
distributed within thyroglobulin, formation of T and
T happens at relatively few sites. Whereas the molar
ratio of T to T in human thyroglobulin is :, some
estimates are that thyroidal secretion contains a molar

T3 target cells
Enhanced thyroid hormone signaling

(DIO2 expressing cells)
Reduced thyroid hormone signaling

(DIO3 expressing cells)
T4

T3

T3(T4)

rT3,T2

DIO2

DIO3
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Figure 1. Deiodinases modify local TH signaling. T4 and T3 enter virtually all cells through membrane transporters. Once inside
the cells, T3 diffuses to the nucleus and interacts with TRs to modulate gene expression. T3–TR complexes control specific sets of
T3-responsive genes, thus promoting T3-dependent biological effects. While inside the cells, TH molecules can be modified through
the deiodinase group of enzymes. Deiodinases modify the biological activity of TH molecules either activating T4 (D2) or
inactivating T4 and T3 (D3). As a result, the flow of T3 molecules diffusing from the cell membrane to the nucleus can be enhanced
with additional T3 supplied by the D2 pathway, which locally converts T4 to T3. In contrast, the D3 pathway decreases the flow of T3
to the nucleus because it terminally inactivates T3 to T2. D2 is an ER-resident protein, a cell compartment that is adjacent to the
nucleus. This explains why D2 activity results in higher TR occupancy with locally generated T3. In contrast, D3 sorts to the plasma
membrane, where it undergoes endocytosis and recycling via early endosomes. Notably, under hypoxic and/or ischemic conditions,
D3 is redirected to the nuclear envelope, where it inactivates T3 and slows down cellular metabolism. See reviews for more details
(1, 4, 17). [Adapted with permission from “Hypothyroidism, thyroid hormones and deiodinases.” www.BiancoLab.org.]
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ratio of :, which indicates that thyroidal T se-
cretion could be enriched via intrathyroidal deiodi-
nation of T to T (–).

In healthy adult individuals, ~% of the T
produced daily is converted to T via D or D
pathways (Fig. ). Essentially, circulating T molecules
enter deiodinase-containing cells, broadly distributed
throughout the body, and are deiodinated to T. In
turn, these newly formed T molecules exit cells and
enter the circulation, mixing with the T molecules
that were secreted directly from the thyroid gland. In
euthyroid individuals, D is thought to catalyze the
bulk of daily T production, ~ mg/d, with a smaller
contribution provided by D ( mg/d) (). Given the
widespreadDIO expression throughout the body, it is
likely that multiple organs/tissues collectively con-
tribute to daily T production. Relatively high D
specific activity can be found in the brain, pituitary

gland, and cold-stimulated BAT (, ). D is present
in many other tissues at lower specific activity, in-
cluding skin, SKM, skeleton, vascular smooth muscle,
and testis (–). The brain, however, also expresses
relatively high levels of DIO, minimizing its potential
as a source of plasma T. BAT, alternatively, does not
express DIO, and thus it is potentially an important
source of circulating T. This has previously been
shown in rodents (), but the finding of D-
containing BAT in humans () indicates that, also
in humans, BAT could be a relevant source of cir-
culating T. Less is known about the contribution
from tissues that express DIO at low levels; given the
mass of some of these organs/tissues, it is probably
relevant as well.

D expression is limited and can be found
predominantly in liver, kidney, and thyroid gland.
D also metabolizes conjugated T, clearing these
molecules from the circulation (). For example, T
is a poor D substrate but, once it is sulfated in its
outer ring, sulfated T (TS) gains water solubility
and is rapidly metabolized via D, conceivably to
conserve iodide before the molecule is eliminated in
the urine or bile (, ). TS has no biologic activity,
but sulfatases present in tissues, particularly the
placenta, and the intestinal microflora can convert
TS back to T. It is currently unclear the extent to
which these pathways play a role in the human T
economy.

Adjustable T3 production and clearance preserve
stability of circulating T3 levels
Two pathways cooperate to maintain stable circulating
T levels: (i) thyroidal T secretion and (ii) the group
of deiodinases. Combined, they stabilize plasma T
levels, preserving TH signaling and clinical euthyroidism
in most tissues.

Thyroidal T3 secretion
The hypothalamic–pituitary axis adjusts thyroidal T
output through controlled thyroglobulin iodination
(i.e., the molar ratio of T to T in the thyroglobulin)
and conversion of T to T within the thyrocyte. In
light of studies on the Mct knockout (Mct-KO)
mouse, it is conceivable that Mct expression within
the thyroid also modifies the T/T ratio that is se-
creted from the thyroid gland. In such animals there is
reduced efflux of T from thyrocytes, thereby pro-
viding more substrate for intrathyroidal deiodination
to T (). The molar ratio of T to T in the thy-
roglobulin molecule is sensitive to TSH receptor
stimulation. Thyroidal stimulation by TSH increases
T formation within thyroglobulin (–), thus
lowering the thyroidal T/T molar ratio and in-
creasing the relative secretion of T. Iodine deficiency
and Graves disease are two extreme examples of this
phenomenon, in which the molar ratio of T to T in
the thyroglobulin can drop to : (, ). It is not clear

Figure 2. Molecular structure of deiodinases. Deiodinases
are homodimeric type I integral membrane selenoproteins
composed of a single N-terminal transmembrane segment
connected to a larger globular domain with a selenocysteine-
containing active center embedded in a thioredoxin-like fold
(18). The structure of the three deiodinases is similar as
modeled through hydrophobic cluster analysis in combination
with position-specific iterated BLAST. Their extramembrane
portion belongs to the thioredoxin-fold superfamily (18). The
crystal structure of an inactive catalytic domain of one of the
deiodinases (mouse D3) was solved and confirmed most aspects
revealed with the three-dimensional modeling (19). It also
revealed a close structural similarity to 2-Cys peroxiredoxin(s)
(Prx), which suggests a route for transferring protons to the
substrate during deiodination and a mechanism for subsequent
recycling of the transiently oxidized enzyme (19). [Adapted with
permission from “Hypothyroidism, thyroid hormones and
deiodinases.” www.BiancoLab.org.]

Transmembrane
domain

Globular
domain
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to what extent subtle changes in circulating TSH,
seen for example during circadian rhythmicity,
contribute to daily variations in circulating T as
opposed to cues generated by the transition from fed
to fast states (), which affect extrathyroidal T
production via deiodination (, ). A cross-
sectional study in healthy individuals with -hour
blood sampling and cosinor analysis indicated that
T follows a circadian rhythm with periodicity that
lags behind TSH, suggesting a more significant role
for thyroidal secretion of T ().

In a remarkable show of adaptability, the thyroidal
secretion is capable of preserving serum T levels in
mice with single or combined global inactivation of
genes encoding D (Dio) and/or D (Dio) (–).
In these animals, there is increased secretion of
TSH that accelerates thyroidal T output, making up
for the lack of extrathyroidal T production. A
byproduct of the enhanced thyroidal activity is el-
evation of circulating T that is tolerated without
suppression of TSH. Serum T is preserved even
when Dio is inactivated in a tissue-specific manner
such as in TSH-producing cells (), glial cells (),
SKM (), adipose tissue, or liver (). Notably, a

similar hypothalamic–pituitary–thyroid (HPT) re-
sponse is involved in the maintenance of serum T
levels during iodine deficiency or mild hypothy-
roidism (, ). In both conditions, there is an
increase in serum TSH levels due to decreased serum
T whereas serum T remains within normal range
or even above normal ().

These analyses indicate that thyroidal T secretion
is the gateway through which the HPT axis affects
systemic TH signaling. Thyroidal T output is par-
ticularly sensitive to TSH signaling, thus explaining
how the HPT axis plays such an important role ().
The HPT axis seems to be particularly driven to defend
serum T levels ().

The deiodinase group of enzymes
These enzymes adjust T production and clearance
outside the thyroid parenchyma in response to fluc-
tuations in circulating TH levels. DIO and DIO
expression and activity exhibit inverse reciprocal re-
lationship during hypothyroidism or hyperthyroidism
(, , ). Whereas DIO is negatively regulated by
TH, the opposite is observed for DIO. As a result, in
hypothyroidism there is an increase in the fractional

Figure 3. Sources and clearance mechanisms of circulating T3 in humans. The daily T3 production in a 70-kg adult individual is ~30mg/d.
The thyroid gland contributes with ~5 mg/d and the rest is produced outside of the thyroid parenchyma via two deiodinase-mediated
pathways, D1 and D2; the latter is the most important source of circulating T3 in humans. Even though the thyroid contributes with a
small fraction of the circulating T3, thyroidal T3 secretion is upregulated in response to TSH stimulation. This occurs through an
increase in the T3/T4 ratio in the thyroglobulin and through increased thyroidal conversion of T4 to T3. Through this mechanism and
the homeostatic changes in deiodinase activity, circulating levels of T3 are maintained fairly stable throughout the day. T3 is cleared
from the circulation by deiodination via the D3 pathway that converts T3 to T2, as well as hepatic glucuronidation and sulfation, the
latter followed by deiodination via the D1 pathway. In cells expressing D1, the T3 residence time inside the cells is relatively short, that is,
~30 minutes, whereas in D2-expressing cells the residence time is several hours. This is probably the result of distinct subcellular
localization of D1 vs D2, plasma membrane vs ER, respectively. Additionally, T3 produced in D2-expressing cells finds its way to the cell
nucleus and binds to TRs, triggering biological effects. See reviews for more details (5). [Adapted with permission from
“Hypothyroidism, thyroid hormones and deiodinases.” www.BiancoLab.org.]
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conversion of T to T, which is a reflection of the
higher D activity; there is also decreased clearance of
T, which reflects lower D activity. Both adjustments
contribute to maintenance of serum T levels within
the normal range (–).

Although DIO expression is only weakly down-
regulated by T (), D activity is greatly decreased by
T via posttranslational mechanisms. D protein and
catalytic activity are lost upon interaction with T (,
) as a result of conjugation to ubiquitin (, ). This
explains why D exhibits a variable half-life that de-
pends on whether its natural substrate T is available.
In the presence of T, D is inactivated with an
~-minute half-life, whereas in the absence of T its
half-life is prolonged to hours. This provides a
mechanism through which the production of T can
be regulated according to the availability of T.

The covalent attachment of multiple ubiquitin
molecules to D both inactivates the enzyme and
targets it to degradation in the proteasomes (–)
(Fig. ). Ubiquitination is thought to inactivate D by
disrupting conformation of the D:D dimer, critical
for enzyme activity (, ). A unique –amino acid
loop in the Dmolecule confers its intrinsic metabolic
instability, facilitating binding to proteins involved in
the ubiquitination process (, ). The ubiquitin-
activating enzymes (UBCs)  and  are critical for the
process of D ubiquitination (, ), as are two
ubiquitin ligases, the hedgehog-inducible WD repeat
and SOCS box-containing  (WSB), and membrane-
associated ring-CH-type finger  (TEB), a ligase in-
volved in the degradation of endoplasmic reticulum
(ER) proteins (, , ). Ubiquitinated D (UbD) is
not immediately taken up by the proteasomes. Instead,
UbD can be reactivated by deubiquitination, a
process catalyzed by two ubiquitin-specific peptidase
(USP) class D–interacting deubiquitinases, USP
and USP ().

D ubiquitination occurs via K-linked ubiquitin
chains (). Once UbD is formed, it can be taken up
by S proteasomes after it is retrotranslocated to
the cytoplasm via interaction with the p–ATPase
complex (Fig. ). D retrotranslocation also includes
deubiquitination by the p-associated deubiquitinase
Ataxin-. Once in the cytosol, D is delivered to the
proteasomes as evidenced by coprecipitation with S
proteasome subunit Sa and increased colocalization
with the S proteasome (). Notably, the other two
deiodinases, D and D, are not known to be ubiq-
uitinated or undergo posttranslational modifications.

Food availability adjusts T3 production and
controls TH signaling
In humans and other mammals, food availability is a
key factor for stimulation of the thyroid system, en-
suring coupling between caloric intake and TH sig-
naling (, ). Default thyroid activity, in the absence
of food, is low, along with low circulating TH levels

and a slow rate of energy expenditure. Once caloric
intake is initiated, thyroidal activity is accelerated and
circulating TH levels increase; for example, this is
seen in patients recovering from anorexia nervosa
(). In such patients, weight gain and elevation in
serum T are closely associated with acceleration in
energy expenditure (). These mechanisms are largely
driven by the hypothalamus, based on molecules that
signal nutritional status, for example, leptin and in-
sulin (–).

A striking feature of the thyroid system during
caloric restriction or fasting in humans includes low
serum T; serum T may be low as well, and this
coexists with normal/low serum TSH (, ). TSH-
releasing hormone (TRH)/TSH may not be elevated
because of the increase in medial basal hypothalamus
(MBH) Dio expression and TH signaling as seen in
mice during fasting (). As a result, serum TH levels
diminish unopposed. In humans, the T production
rate declined by ~% after a -day fasting but the
metabolic clearance rate of T remained unchanged
(). In contrast, rT clearance is reduced by ~% in
these individuals, without changes in rT production
(). The use of animal models to understand the
mechanistic basis of these changes has its limitations.
Fasting in rodents is associated with decreased thy-
roidal () and extrathyroidal T production via
reduced activity of the D pathway (). The activity of
the D pathway is reduced as well (, ), but it has
been difficult to ascertain whether this is cause or
consequence given that Dio is inducible by T as
shown in rodents (, ). Notably, fasting for  to
 hours reduced circulating levels of T and T in
double D/DKO mice (). In these animals, as well
as in other mouse models of food deprivation (), D
activity was increased up to fourfold in skeletal muscle,
liver, and kidney. Additionally, fasted mice also exhibit
an increase in the expression of enzymes involved in
glucuronidation and sulfation of iodothyronines in the
liver, with the latter potentially followed by deiodination
via the D pathway (). These studies suggest that in
rodents, as opposed to humans, an accelerated clearance
of T and T plays a major role in fasting-induced
changes in thyroid economy. Notwithstanding these
differences, reduced levels of circulating T in all models
of fasting diminish TH signaling in most tissues,
explaining the reduction in metabolic rate.

Among different nutrients, carbohydrates are the
most effective tomodulate circulating T levels (, ). In
fact, it is thought that our Paleolithic ancestors had low
circulating T levels, as they subsisted on a very low–
carbohydrate/high-protein diet. The agricultural revolu-
tion with the increase in dietary carbohydrate, ~,
years ago,might have brought circulating T levels to what
they are today, increasing iodine requirements and hence
expanding iodine deficiency (). Mechanistically, a hint
that D-generated T is nutritionally regulated came
from the observation that insulin stimulates D activity in

6 Bianco et al Dynamic Control of TH Signaling Endocrine Reviews, August 2019, 40(4):1–48

REVIEW



rat brown adipocytes () and that insulin sensitizers
stimulate Dio expression in cultures of skeletal myocytes
(). Additionally, D activity in BAT is upregulated by
growth factors such as IGF- and insulin (, ), which
promotes glucose uptake and growth through nutri-
ent sensing pathways such as the phosphatidylinositol
-kinase (PIK)/mammalian target of rapamycin (mTOR)
(, ) pathways (Fig. ). Indeed, semistarvation in rats
is associated with the higher gene encoding D (Dio) and
lowerDio in skeletal muscle along with slower formation
of T from T; these changes are associated with accu-
mulation of slow-twitch fibers at the expense of fast-twitch
fibers, which is a hallmark of reduced TH signaling in
the skeletal muscle. Thus, it is conceivable that dimin-
ished skeletal muscle T production and accelerated T
catabolism not only explain the slower muscle energy
expenditure rate following caloric restriction but also
contribute to the lower circulating levels of T ().
Studies in cells and mice indicate that Dio is normally
inhibited by forkhead box, subgroup O (Foxo) 
(Foxo), a transcriptional regulator that binds the
Dio promoter. In turn, insulin signals through the

PIK–mammalian target of rapamycin complex
(mTORC) –serine/threonine kinase  (AKT) pathway
to relieve Foxo repression. These studies provide a
mechanistic explanation for why in humans fasting is
associated with a reduction in SKM D activity that is
partially prevented by insulin administration ().

Dio expression in the cerebral cortex is not
modified by fasting or refeeding, indicating that Dio
regulation by nutrient availability is not universal,
likely occurring in tissues where the metabolic path-
ways are responsive to T and insulin such as BAT,
SKM, and neonatal liver (, ). Thus, the balance
between PIK–mTORC–AKT and Foxo signaling
in metabolically relevant tissues should provide nu-
tritional input and fine-tuning to the regulation of
circulating levels of T and T-dependent processes.

Accelerated D1 activity increases T3 production in
hyperthyroid patients
On the other end of the spectrum, circulating T
might be disproportionally high in patients with hy-
perthyroidism, particularly with Graves disease, which

Figure 4. D2 is inactivated by ubiquitination. ER stress rapidly reduces D2 activity via activation of eIF2a, which inhibits translation
of Dio2 mRNA. D2 ubiquitination is the molecular mechanism underlying changes in D2 half-life, that is, the covalent attachment
of multiple ubiquitin molecules to D2, which both inactivates the enzyme and targets it to degradation in the proteasomes. D2 is
structured as a homodimer, D2:D2, and monomers are inactive. Ubiquitination is thought to inactivate D2 by disrupting the
conformation of the D2:D2 dimer, critical for enzyme activity. A unique 18–amino acid loop confers intrinsic metabolic instability
to D2, facilitating binding to proteins involved in the ubiquitination process. UBC6 and UBC7 are critical in the process of D2
ubiquitination, as well as two ubiquitin ligases, the hedgehog-inducible WSB1, and TEB4, a ligase involved in the degradation of
proteins in the ER. The WD-40 propeller of WSB-1 recognizes an 18–amino acid loop in D2 that confers metabolic instability,
whereas the SOCS box domain mediates its interaction with an ubiquitinating catalytic core complex, modeled as Elongin
BC–Cul5–Rbx1. Ubiquitinated D2 (UbD2) can be reactivated by deubiquitination, a process catalyzed by two USP class
D2–interacting deubiquitinases, USP20 and USP33. D2 ubiquitination occurs via K48-linked ubiquitin chains and exposure to its
natural substrate, T4, accelerates UbD2 formation. UbD2 is retrotranslocated to the cytoplasm via interaction with the
p97–ATPase complex. D2 retrotranslocation also includes deubiquitination by the p97-associated deubiquitinase Ataxin-3. Once
in the cytosol, D2 is delivery to the proteasomes as evidenced by coprecipitation with 19S proteasome subunit S5a and increased
colocalization with the 20S proteasome. See reviews for more details (86, 87). [Adapted with permission from “Hypothyroidism,
thyroid hormones and deiodinases.” www.BiancoLab.org.]
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contributes with the overall enhancement of TH
signaling. This has been attributed to an accelerated
thyroidal T secretion and T to T conversion via the
D pathway. T secretion is accelerated thanks to
increased T synthesis () as well as increased
intrathyroidal conversion of T to T (). In a study
of patients with Graves disease, higher serum T levels
correlated with higher thyroidal D and D activities
(). Similarly, patients with hyperthyroidism as part
of the McCune–Albright syndrome also exhibit a
lower circulating T/T ratio thanks to accelerated D
and D activities in the thyroid parenchyma (). In
hyperthyroid patients DIO expression is also upre-
gulated outside the thyroid gland (), which is
reminiscent of the fact that in rodents Dio is highly
sensitive and positively regulated by T (). Given
this prominent role played by D in producing T in
hyperthyroid patients, propylthiouracil (PTU), which
specifically inhibits D activity, has been advocated
as a more effective antithyroid drug in severe thyro-
toxicosis or thyroid storm ().

Transmembrane transport, deiodinases, and
TRs fine-tune TH signaling

The signaling TRIAD, that is, (i) transmembrane trans-
port, (ii) intracellular deiodination, and (iii) TR-mediated
gene transcription, defines TH signaling; with each
component, conditions exist that may, permanently or
transiently, enhance or dampen TH signaling.

Local mechanisms for customization of
TH signaling
A number of physiological and pathophysiological
conditions exist in which homeostatic or disease
signals can transiently affect the TRIAD that controls
TH action in specific organs or tissues, resulting in
dynamic changes of local TH signaling. THs move
across the plasma membrane (in and out of cells) via
transporters following a concentration gradient of free
hormone between the extracellular fluid and the cy-
toplasm. Thus, movement of TH molecules across the
cell membrane requires the transporters, but a relative

Figure 5. Nutrient availability and activation of TH signaling. Leptin is a key molecule signaling food intake and the availability of
energy substrates to the hypothalamus, where it activates the HPT axis by stimulating secretion of TRH and TSH, and hence
thyroidal activity. There is a drop in serum T3 levels with fasting, which reflects decreased thyroidal secretion and decreased
extrathyroidal conversion of T4 to T3. The mechanism regulating DIO2 expression in skeletal muscle in this setting was modeled
by shifting cells to media containing only 0.1% fetal bovine serum, which reduces DIO2 expression via FOXO1-mediated
transcriptional repression (62). There is a FOXO1 binding site within the DIO2 promoter, close to the transcription start site.
Binding of FOXO1 to this site suppresses DIO2 gene expression. In contrast, shifting cells back to a media containing 10% fetal
bovine serum (after 24 h of fasting) increases DIO2 expression and D2 activity through a mechanism initiated by insulin and
mediated by a series of kinases (PI3K–mTORC2–AKT) that end up phosphorylating FOXO1, hence relieving DIO2 repression. These
findings are relevant for hypothyroid patients maintained on L-T4 that depend on D2 for.80% of all their T3 needs; thus, they are
at greater risk to develop low serum T3 during caloric restriction (62). [Adapted with permission from “Hypothyroidism, thyroid
hormones and deiodinases.” www.BiancoLab.org.]
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excess of transporter molecules should not increase
further intracellular levels of THs or TH signaling
(). In other words, increasing the expression of
TH transporters beyond a critical minimal number
will likely only speed up the time to equilibrium
between the two compartments, not define the in-
tracellular levels of THs. In fact, most of the situations
in which TH transporters affect TH signaling are the
result of transporter inactivation or marked down-
regulation. In contrast, dynamic modifications of TRs
and transcriptional coregulators have been shown to
affect the intensity of TH signaling both ways, but by
far the most impressive dynamic control of TH action
is seen as a result of the deiodinase group. It is unlikely,
however, that deiodinases define TH signaling uni-
versally, at all times. It is expected that future studies
will reveal new components, pathways, and nuances
underlying dynamic control of TH signaling, such as,
for example, posttranslational modifications of TH
transporters and TRs. Furthermore, it is imperative
that we better understand how cytosolic T finds its
way to the cell nucleus. It is generally agreed that the
T equilibration between cytosol and cell nucleus is
defined by simple diffusion. However, estimates of the
concentration of FT in these compartments revealed
nuclear/cytosolic T ratios of ~ in the liver, ~ in
the kidney, ~ in the heart, and ~ in the brain,
suggesting that a specific transport mechanism exists
from cytosol to the cell nucleus (). It remains to be
seen whether D with its perinuclear localization
plays a role in the higher ratios observed in the brain.

Tissue-specific dynamic changes in TH signaling
occur in a number of systems in response to multiple
physiological cues, without antecedent changes in
circulating levels of THs. For example, cold exposure
through the sympathetic nervous system stimulates
Dio expression and T production in BAT that adds
to the intracellular T entering from the circulation.
As a result, there is an increase in cellular T content
that augments TR occupancy from its baseline level of
~% (, ) to .%, along with induction of T-
responsive genes (). Such a role for D in defining
local TH signaling is not unique to BAT (). For example,
in the developing setting a timed surge in D-generated
T is critical for a number of organs, including cochlea
() and liver (). In the adult mouse, D-generated T
has also been shown to play a role in brain, lung, SKM,
and skeleton (, –) (Fig. ).

Unfortunately, measuring TR occupancy to assess
changes in TH signaling is cumbersome and rarely
done. Alternatively, investigators have measured tissue
T or relied on changes in mRNA levels of T-
responsive genes or well-known T-dependent bi-
ologic effects to study TH signaling (). For example, it
is assumed that induction of DIO in skin cells by
members of the Hedgehog family of proteins reduces
TH signaling. This is because the mRNA levels for
cyclin D, a gene that is negatively regulated by T,

increase upon induction of DIO and is followed by
proliferation of keratinocytes (). Similarly, two
mouse models of DIO overexpression in the myo-
cardium further illustrate how deiodinase expression
modifies TH signaling (, ). In both cases,
modulation of T-responsive genes and biologic ef-
fects were documented. Notwithstanding, there is still
the possibility that dynamic changes in deiodinases (or
other elements of the signaling TRIAD) coincide with
but do not directly affect the expression of T-
responsive genes. Multiple approaches have been
used to exclude random associations, including gene
inactivation or silencing as well as phenotypic rescue
with reintroduction of the targeted gene ().

The availability of mouse models that express T
reporter systems has been helpful in the evaluation of
the signaling TRIAD (, ). For example, a mouse
with global Dio inactivation (global-DKO) was
crossed with the transgenic mouse model FINDT
that expresses the reporter gene b-galactosidase as a
readout of local TH signaling. Studies of the FINDT/
DKO litter indicate that TH signaling in the central
nervous system (CNS) of these animals fluctuates
throughout the animal’s life. Following a period of
enhanced TH signaling in early development, most
regions of the DKO brain experience reduced TH
signaling. Notably, TH signaling is elevated again later
in adulthood and in old age, despite reduced circulating
TH levels (). As a counterpoint, the role played by
Dio activation in TH signaling can be visualized through
bioluminescence in the TH action indicator mouse
model (), a transgenic mouse ubiquitously expressing a
luciferase reporter gene regulated by a strong TRE that
operates in the context of endogenously expressed levels
of TH transporters, TRs, and transcriptional coregulators.
Exposing these mice to cold (°C) caused tissue-specific
bioluminescence in the interscapular region (inter-
scapular BAT), along with an ~.- to .-fold increase in
luciferase activity and mRNA in interscapular BAT,
which was eliminated after surgical denervation of the
organ ().

TH transporters
The type and expression level of TH transporters
constitute an intrinsic property of each cell/tissue,
which in general responds minimally to physiologi-
cal or disease signals. For example, it is unclear
whether the expression of TH transporters is affected
by TH. Changes are small and there is conflicting
evidence, with interspecies variability (). Further-
more, TH transporters are typically multispanning
plasma membrane proteins with long half-lives, un-
likely to exhibit fast regulation. Notwithstanding, there
are reports of increased transporter expression in
liver and SKM of critically ill patients and in a rabbit
model of prolonged critical illness (), as well as in
thyroid tissue of patients with Graves disease (). In
contrast, Mct and Oatpc expression in the mouse
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blood–brain barrier (BBB) is transiently diminished
in response to an acute inflammatory challenge by
lipopolysaccharide (). Mct is also downregulated
in benign and malignant thyroid tumors () as
well as in rat thyroid tissue after iodine overload
(). The impact of these changes in transporter
expression on local TH signaling, if any, has yet to be
determined.

Mutations may impair the function of TH trans-
porters, which in turn may dampen cellular uptake of
T and TH signaling in cells that depend (mostly) on a
specific transporter (). Fortunately, this is a rare
condition due to redundancy of transporter molecules,
but it can be seen in carriers ofMCT gene mutations
that result in the X-linked Allan–Herndon–Dudley
syndrome (, ) and in carriers of OATPC gene
mutation that results in dementia with spasticity and
cold intolerance (). Intellectual disability and
problems with movement in patients with MCT
mutations stem from developmental deficit of T in
brain areas where neurons rely on MCT to take up
T. A mouse with Mct inactivation exhibits some-
what reduced TH content in the cerebrum and cer-
ebellum despite elevated circulating levels of T;
neurologic deficits are present, but much less intense
than in humans (–). In this species, the com-
bined inactivation of Oatpc is also required to lower
brain T levels and cause locomotor abnormalities
typical for Allan–Herndon–Dudley syndrome ().
Molecules with thyromimetic activity that enter cells
via different mechanisms or transporters may be
useful in these syndromes, as they could restore TH
signaling. For example, administration of the TH

analog diiodothyropropionic acid, which is less de-
pendent on MCT to enter cells, seems to rescue brain
hypothyroidism (); Triac also bypasses the plasma
membrane of fibroblasts obtained from carriers
of MCT mutations (). Furthermore, diiodothyr-
opropionic acid has been used in children with
Allan–Herndon–Dudley syndrome with promising
results ().

Deiodinases
The discovery that deiodinases convert T to T in
humans heightened interest in these enzymes ().
From a physiological perspective, deiodination was
found to activate T to T in the MBH and pituitary
gland, transducing plasma T levels, via the T
molecule, to the system that regulates TRH and TSH
secretion (, ); this explained the effect of T on
TSH secretion. Subsequently, local deiodination was
identified as the source of most T in the brain.
Additionally, because the acceleration in D activity
preserves T content in the cerebral cortex during
iodine deficiency, this pathway was identified as key to
cerebral cortex adaptation to low T in the circulation
(). Later, studies in cold-exposed rats led to the
discovery that induction of Dio expression can
enhance TH signaling in a tissue-specific fashion,
without antecedent changes in plasma T levels (,
, , ). This mechanism explained the mo-
lecular link between deiodination and thermogenesis,
specifically that the uncoupling protein  (UCP) gene
is transcriptionally upregulated by D-generated T
(). Conversely, the observations that D activity
correlates inversely with tissue T content () and

Figure 6. Developmental control of TH signaling via timed expression of deiodinases. Profiles of DIO2 (red line) and DIO3 (blue line)
expression in (a) placenta, (b) retina, (c) cochlea, (d) SKM, (e) BAT, and (f) bone at the indicated periods of life. In most cases DIO2 and
DIO3 exhibit a reciprocal inverse relationship. In general, D3 activity is high at early embryonic stages. Its expression drop is followed by
an elevation in DIO2. See reviews for more details (7, 8, 48, 68, 132).
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that DIO expression can be reactivated in almost any
tissue (, ) led to the discovery of conditions in
which DIO expression dampens local TH signaling
and even causes systemic hypothyroidism ().
Subsequent studies in a number of vertebrate species
led to the discovery that coordinated reciprocal ex-
pression of Dio and Dio during development cus-
tomizes TH signaling in most organs/tissues according
to a predefined developmental program (, , )
(Fig. ).

Deiodinases are anchored in cellular membranes
with the catalytic active site located in the cytosol (,
, ). T production via D and D occurs inside
cells, but T molecules eventually exit such cells via
TH transporters mixing with the pool of circulating
T. In contrast, D-expressing cells function as sinks
for T and T, dampening local TH signaling and
consuming circulating TH. Important differences exist
between D and D; D has low affinity for T (Km of
~2M), has a half-life measured in hours, is induced
by TH, and is inhibited by PTU; D has high affinity
for T (Km of ~2 M), has a half-life measured in
minutes, is inhibited by TH, and is inducible by cAMP.
Additionally, the differing subcellular localizations of
D and D impact the fate of T molecules produced
by these enzymes (, ). D is located in the plasma
membrane, possibly explaining why D-generated T
equilibrates rapidly with plasma; the mean residence
time of D-generated T inside cells is ~ minutes
(). In contrast, D is an ER-resident protein, possibly
explaining why D-generated T does not equilibrate
rapidly with plasma; the mean residence time of D-
generated T is ~ hours (, ).

D has high affinity for T (Km of ~2 M), and
it is stimulated by developmental and disease signals.
D is anchored in the plasma membrane and is
constantly internalized to early endosomes and
recycled back to the plasma membrane, which ac-
counts for its relatively long half-life (~ hours)
(). Both T and T entering cells from the cir-
culation can be deiodinated via D to inactive
molecules rT and ,9-diiodo-L-thyronine (T),
respectively. Thus, D activity depletes cells of TH
and reduces TH signaling (). Under hypoxic/
ischemic conditions D is redirected to the cell
nucleus where it accumulates in the nuclear envelope
(); this occurs via the cochaperone heat shock
protein  (HSP). Preventing nuclear D import by
HSP knockdown increases the metabolic effects of
T. In contrast, HSP overexpression increases
nuclear import of D and minimized TH effects in
cell metabolism ().

Structural and functional properties of both D
and D place these enzymes at the crossroads of TH
action. The high catalytic activity of D associated with
the longer residence time of D-generated T link D
to intracellular buildup of Tmolecules and enhanced
TH signaling. On the contrary, the high catalytic

activity of D along with its potential to accumulate in
the nuclear envelope link D to lower intracellular T
content and reduced TH signaling.

An alternative way through which DIO and DIO
expression can influence local TH signaling is by
reacting to changes in circulating levels of T and T,
hence minimizing the impact of these changes on TH
signaling (). For example, iodine deficiency in rats
markedly lowers plasma T without affecting plasma
T. Circulating T is preserved due to increased
thyroidal T secretion, to accelerated conversion of T
to T in Dio-expressing tissues, and to reduced T
clearance in Dio-expressing tissues. Although the
decrease in plasma T does not affect TH signaling in
tissues that depend on circulating T, it places tissues
that depend on local D-mediated T to T con-
version, such as brain, at risk for reduced TH signaling.
Therefore, adaptive changes in Dio and Dio ex-
pression occur under these circumstances that pre-
serve T content and TH signaling in these tissues. In
the brain, iodine deficiency lowers Dio mRNA ex-
pression and D activity several fold, whereas D
activity is increased by ~-fold. Thus, reciprocal
changes in D and D activities are an integral
component of the brain’s physiological response to
iodine deficiency (). Indeed, cerebral T levels are
preserved in iodine-deficient mouse pups throughout
most of the postnatal period of brain development
(), highlighting the homeostatic efficiency of the
deiodinases.

Deiodinase genes. Inactivating mutations in
the genes encoding the deiodinases have not been
reported. These are probably “concealed” by the ex-
traordinary ability of the HPT axis to preserve cir-
culating T levels as seen in mice with complete
absence of deiodinases (). However, we know of
alternatively spliced Dio mRNA molecules that en-
code an inactive D enzyme, including both deleted
and insertion-extended Dio mRNA (). In the
human DIO, for example, a  -bp region from the
middle portion of the ~-kb-long intron was found
inserted downstream of codon , which results in an
extra in-frame UGA codon and an ~-kDa inactive
D enzyme (, ). Additionally, there is also a
Dio mRNA variant that lacks  bp in the coding
region at the conserved exon/intron junction, which
results in an inactive D protein (). The physio-
logical and/or clinical implications of these mRNA
variants remain poorly understood.

Notwithstanding, an array of single-nucleotide
polymorphisms (SNPs) of the deiodinase genes ex-
ists that could disrupt TH signaling and explain as-
sociated clinical syndromes (). Molecular scanning
of DIO identified a ThrAla variant present in %
to % of the population () that is associated
with metabolic parameters suggestive of reduced
TH signaling (). These original findings led to
population-based studies suggesting associations
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between ThrAla-DIO and hypertension (),
insulin resistance (, ), type  diabetes (),
bipolar disorder (), mental retardation (), low
IQ (), recovery from lung injury (), osteoar-
thritis (), and increased bone turnover (), all of
which could reflect localized disruption in TH sig-
naling. Perhaps unsurprisingly, the associations be-
tween DIO SNPs and clinical syndromes have not
been universally reproduced (, , ). Racial and
other background factors that are difficult to control
for may play important roles in such associations.
Negative studies include the evaluation of ,
individuals, including  patients on TH replacement
therapy. No associations between the ThrAla-DIO
SNP and thyroid parameters, quality of life, or cog-
nitive functioning were observed ().

The missense amino acid exchange encoded by
ThrAla-DIO is in the D coding region, specifically
the very first amino acid in an -residue instability
loop that explains the relatively short D half-life ().
Deletion of this loop stabilizes D () whereas its
transfer to stable proteins shortens half-life ().
Mapping of this mutation to such a critical D residue
supports the possibility that it could affect D activ-
ity and/or its stability, decreasing D-mediated T
production. However, several groups have failed to
detect differences in enzyme kinetics [Km(T) and
Vmax] of the ThrAla-D protein when assayed in
sonicates of cells transiently expressing ThrAla-
DIO (, ) or of tissue samples obtained from a
mouse carrying the ThrAla-Dio polymorphism
(). A contrasting finding was obtained in thyroid
sonicates of individuals with the ThrAla-DIO
polymorphism, which revealed decreased Vmax ().

Understanding the impact of the ThrAla-DIO
polymorphism of D activity required utilizing in-
tact cells. T-dependent biologic effects were less
evident in proliferating murine myoblasts and thy-
rotropes expressing ThrAla-D, suggesting reduced
D-mediated T production (). Indeed, when
assayed in intact cells, ThrAla-D exhibited ~%
reduced catalytic activity despite similar D protein
levels (). Three studies in patients indirectly sup-
port this: (i) higher doses of levothyroxine (L-T) were
needed to achieve target TSH levels in  thyroid-
ectomized individuals carrying the ThrAla-DIO
polymorphism (); (ii) the ThrAla-DIO poly-
morphism is associated with delayed T secretion in
response to TRH stimulation (); and (iii) in a study
of  thyroidectomized subjects on L-T, the DIO
genotype revealed an association between low FT
values and ThrAla, with the mean postsurgery FT
levels significantly lower in patients carrying the
ThrAla allele(s) (). Notwithstanding, results of
all studies showed that individual carriers of the
ThrAla-DIO polymorphism with a normal thyroid
gland are systemically euthyroid (). Phenotypes
related to polymorphisms in DIO and DIO have

also been reported, particularly in association with
modifications in circulating TH levels (–), but
their clinical significance has been less well docu-
mented [see Refs. (, ) for review].

Deiodinase synthesis. Genetic defects in two
components of the complex machinery required for
selenoprotein synthesis have been reported to cause
inherited deficiencies in the deiodinases and abnormal
thyroid function signaling (, ). One such defect
is caused by mutations in the selenocysteine insertion
sequence (SECIS)–binding protein  (SECISBP or
SBP), MIM  (). The C-terminal region of
the protein is responsible for SBP functions: SECIS-
binding capacity, ribosome interaction, and seleno-
cysteine insertion through two main domains in the
C-terminal region [the RNA-binding domain and the
selenocysteine (Sec) incorporation domain] ().
Most patients with partial SBP deficiency seek
medical attention during childhood because of short
stature and delayed bone age. These features prompt
thyroid function testing, leading to the identification of
thyroid abnormalities. Currently only  families have
been reported worldwide (, ). Recessive mu-
tations in SBP result in abnormalities in TH metab-
olism with characteristic thyroid test abnormalities, with
high serum T, low T, high rT, and normal or
slightly elevated serum TSH (), which have served
as biomarkers to identify additional patients with SBP
deficiency. Additional clinical features have been ob-
served in some patients, such as axial muscular dys-
trophy, azoospermia, skin photosensitivity, abnormal
immune cell function, and marked insulin sensitivity,
indicating a multisystem disorder involving the de-
fective biosynthesis of multiple selenoproteins (). Of
note, most reported patients are children, and the only
known adult with this defect exhibits many more
symptoms, raising the concern that additional pheno-
typic features can develop with age ().

In vitro studies in cultured skin fibroblasts have
demonstrated decreased D activity and glutathione
peroxidase , as well as decreased selenium, seleno-
protein P, and glutathione peroxidase  enzymatic
activity in serum, which supported a generalized defect
in selenoprotein biosynthesis. In vivo studies in pa-
tients have shown that higher amounts of L-T and
higher circulating serum T levels are needed to
suppress TSH in affected subjects compared with
controls, although similar doses of liothyronine
(L-T) and circulating levels of T were able to
equally suppress TSH, indicating an impairment in
deiodinase-mediated T to T conversion.

Considering that complete congenital Sbp de-
ficiency is not compatible with survival (), other
targeting strategies have been used (–). The
hepatocyte and neuron-specific knockout (KO)
models have not replicated the circulating thyroid
function tests (, ). A recent mouse model of
tamoxifen inducible conditional KO (iCKO) of Sbp
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has replicated most of the characteristic serum
thyroid test abnormalities, with high T, high rT,
and elevated TSH, with normal T (). It is notable
that there seems to be an inverse relationship be-
tween T and TSH between mice and humans with
SBP deficiency. In patients, T is distinctly low,
although TSH is usually normal and only occa-
sionally slightly elevated, whereas in mice, TSH is
distinctly high and T levels are comparable to those
of wild-type controls (, ). Additionally, mouse
models of Dio KO, Dio KO, double-KO, and even
triple-KO Dio/Dio/Dio maintain normal circu-
lating T levels (, ). Detailed studies in the
Sbp iCKO mice demonstrated decreased enzymatic
activity of D in liver, of D in cerebrum, and de-
creased expression of Dio in cerebrum. Additional
insights from study of the Sbp iCKO mice have
brought up new aspects; in particular, the brain T
content was low, despite normal and high circulating
T and T, respectively. This relative hypothyroidism
at the cerebral level is expected to have consequences
at the levels of TH-regulated genes.

Another inborn error in a component of the
selenoprotein synthesis machinery was recently iden-
tified in a patient presenting with abdominal pain,
fatigue, muscle weakness, reduced plasma selenium,
and abnormal thyroid function tests similar to those of
SBP-deficient patients (). This patient harbored a
homozygous missense mutation in the TRU-TCA-
gene, which encodes for tRNA[Ser]Sec. Whereas lack
of tRNA[Ser]Sec in mice is embryonically lethal (),
studies on patients’ cells showed preservation of re-
duced levels of tRNA[Ser]Sec (). Identification of
additional patients and further in vitro characterization
will provide more insight into this new genetic defect
that seems to also alter TH metabolism.

TH receptors
At some point during early embryogenesis cells start
expressing TRa and/or TRb. The levels at which these
genes are expressed might change during development
but, in broad terms, stay relatively stable throughout
life. Notably, hundreds of patients carrying mutations
in the TR encoding genes with significant phenotypes
have been reported. Mutations that inactivate TRb
cause a syndrome of TH resistance in which patients
exhibit hyperthyroidism due to pituitary insensitivity
to THs. There is enhanced TH signaling in tissues that
predominantly express TRa, for example, brain and
bone, and diminished TH signaling in tissues where
TRb predominates, for example, pituitary gland and
liver (, ). Fewer families with TRa mutations
have been reported (, ). These individuals have
low to low-normal serum free T (FT), high-normal
to high T, and low rT, with normal TSH levels,
but they exhibit localized reduction in TH in tissues
where TRa predominates (brain, skeleton, and gas-
trointestinal tract), resulting in growth retardation,

mild impairment of mental development, and con-
stipation ().

The expression of TRa or TRb may fluctuate as
part of normal homeostatic mechanisms or in disease
states, but it is not clear that an overarching hypothesis
of how TH signaling is dynamically affected by these
changes can be developed at this time. The question of
whether TR expression is affected by TH signaling
and/or other signaling molecules remains an in-
teresting one. TH has been shown to regulate the TR
level in a number of tissues and cell lines, but the
results are not always consistent. Analysis of I-–
radiolabeled T binding to isolated nuclei revealed no
differences (increases or decreases) in the number of
TRs in response to hypothyroidism or hyperthy-
roidism (, ). In a comprehensive study, hypo-
thyroid rats were treated with either saline or T
followed by analyses of mRNA encoding different TR
isoforms (). There was marked tissue-specific and
differential regulation of the multiple TR transcripts by
T. In the pituitary, the levels of TRa- mRNA in-
creased, whereas the levels of the pituitary-specific
TRb- decreased with T treatment. In heart, kid-
ney, liver, and brain the levels of TRb- were un-
affected by thyroid status, whereas both TRa mRNAs
decreased with T treatment in all tissues except for
the brain, where there was no change. The study,
however, did not assess whether/how these changes
affected TH signaling. Additionally, and also very
importantly, there was a discrepancy between mRNAs
levels and nuclear binding sites for T, indicating that
relying on TR mRNA levels only might not be feasible
().

Disease signals reportedly affect TR expression and
TH signaling. Patients with nonthyroidal illness syn-
drome (NTIS) exhibit a drop in circulating T levels
but no obvious signs of clinical hypothyroidism.
Studies on peripheral mononuclear cells from patients
admitted to an intensive care unit revealed that this
could be due to changes in TR expression (). In
such patients there were increases in mRNA levels of
both TRa and TRb when compared with peripheral
mononuclear cells from normal individuals. Similar
findings were obtained in liver biopsy specimens of
patients with liver disease (). Although these
findings suggest that increases in TR expression during
NTIS may support clinical euthyroidism in the face of
reduced levels of circulating TH, they are certainly not
universal. For example, patients with nonseptic shock
and NTIS exhibited a reduction in skeletal muscle
expression of TRb, TRa, and retinoid X receptor
(RXR)g (), indicating that more studies are needed
before a unifying hypothesis could be formulated.

In addition to regulation at the gene expression
level, TRa and TRb properties and functions can be
modified by posttranslational modifications, including
phosphorylation, acetylation, and conjugation to small
ubiquitin-like modifier (SUMO), a process referred to
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as sumoylation (, ). These modifications affect
TH signaling by altering TR/DNA binding, interaction
with cofactors, and TR-mediated gene transcription.
For example, TR phosphorylation promotes TR/DNA
binding and heterodimerization with RXR. In the case
of TRb, phosphorylation is induced by TH at the cell
membrane level and phosphorylation occurs via ERKs.
In turn, TRa is susceptible to phosphorylation by
casein  and protein kinase A, which reduces DNA
binding (, ). Such TR modifications are unlikely
to be permanent, but they allow for rapid crosstalk
with other fast signaling networks. For example, TR
phosphorylation facilitates a crosstalk with the PIK/
AKT pathway. It has been reported that an un-
occupied TRb molecule can be associated with the
regulatory subunit of PIK, an intracellular signaling
kinase. Binding to T dissociates the TRb–PIK
complex and increases PIK signaling. Abrogation of
TRb–PIK binding in mice does not affect TRb
signaling but results in deficient synaptic strength and
plasticity, possibly due to a developmental defect in
PIK signaling (). Additionally, in human umbil-
ical vein endothelial cells both T and T rapidly
stimulate AKT phosphorylation and activate Ras-
related C botulinum toxin substrate  (Rac),
which results in PIK-dependent cell migration. Hu-
man umbilical vein endothelial cells are known to
express DIO and have D activity that, when blocked,
abolishes AKT phosphorylation, Rac activation, and
cell migration induced by T but not by T. These
observations suggest that the D pathway is involved in
TRa/PIK-mediated nongenomic actions of T ().
If confirmed, the crosstalk between these pathways
constitutes a mechanism through which TH signaling
can be modified via downstream kinase cascades.

TR coregulators. TR functions alongside
transcriptional regulators to ultimately define TH sig-
naling. In the absence of T, empty TRs recruit nuclear
corepressors, nuclear receptor corepressor (NcoR) 
and NcoR (SMRT), which in turn recruit histone
deacetylase  (HDAC) to repress transcription via
histone deacetylation (, ). Even in the absence
of ligand, TRs bind to TRE and repress genes pos-
itively regulated by T. T modifies this arrangement
by disassembling the corepressor complex and
recruiting members of the steroid receptor coac-
tivators family of coactivators, p/CREB-binding
protein and other activators of histone acetylation, to
accelerate transcriptional activity (). Studies in
which NcoR and steroid receptor coactivator- were
selectively inactivated revealed that the target set
point expression of a T-responsive gene is affected
by the balance between corepressors and coactivators
(). Therefore, TH signaling can be dynamically
modified by the local levels of NcoR/SMRT and
local coactivators (). There are numerous other
potential coregulators that may play a role in TH
action, including histone deacetylase Sirt and the

mediator subunit Med (, ). In fact, the unique
environment in each cell that surrounds each TRE
probably allows for its own blend of TR/coregulators,
which then initiate or modulate TH signaling.

NcoR actions are tightly regulated by metabolic
signals in liver, SKM, and adipose tissue, hence
allowing for metabolic regulation of TH signaling in
these tissues. For example, insulin and mTORC
increase nuclear levels of NcoR, which leads to re-
pression of lipid oxidation genes (, ). Likewise,
endurance exercise, fasting, high-fat diet (HFD), aging,
and accelerated fat oxidation are all conditions asso-
ciated with changes in NcoR mRNA levels ();
TH signaling is expected to fluctuate accordingly.
Other examples include the peroxisome proliferator-
activated receptor-g (PPARg) coactivator a (PGCa), a
TR coactivator that is reduced in both genetic (ob/ob)
and acquired obesity (HFD), setting the stage for
reduced T effects in individuals who are obese. In-
deed, in the liver of individuals with obesity and during
fatty liver disease, TH signaling is reduced, which
seems to contribute to metabolic imbalance (–).
For example, TRb expression was inversely correlated
with disease severity in  liver biopsies from patients
with different stages of nonalcoholic steatohepatitis
(). That TH signaling is reduced during metabolic
unbalance is also supported by the failure of TH to
induce typical T-responsive genes and accelerate
energy expenditure in mice placed on an HFD ().
Remarkably, gene expression analyses of surgical liver
biopsies from  subjects with obesity and five con-
trol subjects revealed that the top-ranking gene set
downregulated in subjects with obesity was comprised
of T-responsive genes related to RNA metabolism,
protein catabolism, and energy metabolism. Thus,
despite normal serum T levels, there is reduction in
T signaling in models of obesity linked to a drop in
PGCa levels ().

Integrated Action of TH Transporters,
Deiodinases, and TRs in Health and in Disease

Systemic and localized control of TH signaling is of
paramount importance in development, growth, and
normal adult life. The dynamic regulation of the el-
ements in the signaling TRIAD allow for constant
adjustment to TH signaling according to endogenous
and environmental cues. At the same time, remarkable
changes in TH economy and signaling occur during
disease states (). For example, most hospitalized
patients exhibit a substantial drop in circulating T,
the explanation of which is multifactorial. TSH levels
in these patients are inappropriately low for the re-
duced T and T serum levels. This is largely the result
of increased Dio expression in MBH tanycytes, which
are specialized glial cells lining the third ventricle with
projections to the median eminence. This leads to a
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localized increase in TH signaling and suppression of
TRH/TSH secretion at the same time that circulating
TH levels are falling (–). In fact, the increase in
MBH Dio expression is the cause, rather than a
consequence, of the drop in circulating TH levels
(–). Additionally, depending on the nature of
the disease, there can be also ectopic Dio expression
and accelerated D activity in one or more affected
organs/tissues (, , , ), which dampens local
TH signaling and also contributes to the reduction in
circulating T levels. Indeed, the expression of the
other elements in the TH signaling TRIAD can also be
affected during NTIS in a tissue-specific fashion,
depending on the nature of NTIS. This is elegantly
illustrated in the study of liver and skeletal muscle of
mice experiencing three models of NTIS (). In the
liver, NTIS was associated with variable degrees of
reduction in Mct, Mct, TRb, D and D activities,
and T content, markedly reducing the expression of a
T-responsive gene. In contrast, the skeletal muscle of
the same animals behaved quite differently, with much
less impressive changes, if any, in TRIAD elements and
preserved TH signaling ().

It is notable that, in disease states, systemic signaling
and local TH signaling support a proinflammatory
response in innate immune cells, such as neutrophils,
macrophages, and dendritic cells, via TRa (–).
Dio expression in macrophages () is induced
during the initial phase of inflammation (, ,
). There is evidence that TH signaling in macro-
phages can occur through genomic and nongenomic
pathways via integrin avb, PIK, and ERK/ ().
Both pathways increase phagocytic capacity, cytokine
response, inducible nitric oxide synthase, and bacterial
death (–). Accordingly, macrophages obtained
from mice with global inactivation of Dio (global-
DKO) have impaired phagocytosis and decreased
cytokine production, similar to macrophages obtained
from TRa KO mice (, ). At the same time, D
protein can be found in the cytoplasm and in granules
containing either myeloperoxidase or lactoferrin of
murine and human neutrophils expressing Dio (,
). Accelerated D activity lowers intracellular T
levels concomitantly with production of free iodide.
The latter has been proposed as important for the
generation of hypoiodite, a toxic compound that kills
bacteria (, ). In fact, mice with global Dio
inactivation (global-DKO) exhibit decreased bacterial
killing ability (), and zebrafish embryos with Dio
knockdown have increased mortality and reduced
neutrophil infiltration during pneumococcal menin-
gitis ().

TH signaling triggers TRH and TSH
negative feedback
The relationship between thyroid activity and the HPT
axis is explained by a set point and maintained by a
feedback mechanism. The set point is defined during

development, including the perinatal period, and fine-
tuned by the hypothalamus, where environmental
and endogenous cues are integrated. The feedback
mechanism is based on constant monitoring of TH
levels in the systemic circulation, which then leads to
adjustments in TRH and TSH secretions and hence
thyroidal activity. Circulating T and T play in-
dependent roles in this process: circulating T is
detected by TRH-expressing neurons in the para-
ventricular nucleus (PVN) and in the TSH-producing
cells of the anterior pituitary gland; circulating T
requires local conversion to T via the D pathway
present in the MBH and in the thyrotropes of the
anterior pituitary gland.

The independent role played by T in the feedback
mechanism is illustrated by the increase in serum TSH
that trails the decrease in serum T associated with
iodine deficiency or mild hypothyroidism, whereas
serum T remains within the normal range (, ).
Few examples exist in which the independent role of
T in the feedback mechanism can be documented.
Most cases in which serum T is low in the face of
normal serum T levels indicate altered thyroid
economy due to NTIS, which does not reflect normal
HPT physiology (). A unique experimental setup
that points to serum T per se as having an important
role in TSH secretion is acute administration of large
doses of PTU to thyroidectomized individuals kept on
L-T replacement therapy (). The ~% drop in
serum T that follows as a result of D inhibition is
sufficient to double serum TSH levels, even as serum
T levels remain stable ().

The structures involved in monitoring circulating
T and T levels are located inside and outside the
BBB. Within the BBB, THs are transported via both
MCT and OATPC, which are expressed in the
barrier’s endothelial cells. For example, TRH neurons
in the PVN project to the outer zone of the median
eminence, a region located below the floor of the third
ventricle, which is outside of the BBB (). The
median eminence is a critical anatomic and functional
region where the two sources of T are integrated: T
from the systemic circulation and T produced locally
via D-mediated deiodination of T in the tanycytes.
MCT is abundant in the axon varicosities of TRH
neurons, suggesting that T is taken up by these cells
via this transporter (). Indeed, the brain of a global
Mct-KOmouse takes up less T and has decreased T
content, with marked upregulation of Trh mRNA in
the PVN neurons (). The role played by Oatpc is
less clear (). Whereas TH uptake is also affected in
the brain of global mice with global Oatpc in-
activation, Trh expression is not (). In addition to
expressing Dio, tanycytes express both MCT and
OATPC (, ). It is thought that T produced
by tanycytes exits the cells through these transporters
and is taken up by axon terminals of the PVN neurons
that extend to the median eminence; indeed, these
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axon terminals lie in close proximity to tanycyte
endfeet processes (, ). Thyroid hormone
transporters might play similar roles in the human
brain, where MCT is also found in PVN neurons and
glial cells (, ).

At the same time, the presence of D in thyro-
tropes allows plasma T to directly inhibit pro-
duction of TSH in the pituitary (). The direct role
played by T (and T) in TSH secretion is critical
given that not even an injection of a TRH bolus is
able to elicit TSH secretion in patients with mildly
elevated TH levels (). Unfortunately, not so much
is known about TH transport in the pituitary TSH-
secreting thyrotropes: T signaling in the pituitary
gland is mildly impaired in mice with Mct in-
activation, but the transport mechanism remains
elusive (). The role played by D in the tanycytes
and thyrotropes for the HPT feedback mechanism
was further elucidated through studies in the global-
DKO mouse (). These animals exhibit normal
serum T, but serum TSH and T are elevated,
hinting at a relative hypothalamic and pituitary in-
sensitivity to T. Indeed, pituitary D specifically
seems to play an important role in this phenotype
given that a mouse with selective inactivation of Dio
in the pituitary gland also exhibits normal serum T
but elevated serum T and TSH; PVN TRH mRNA
levels are reduced as well as the TSH bioactivity ().
Unfortunately, objective demonstration of the rela-
tive role of D in tanycytes is still missing given that
selective inactivation of Dio in these cells has yet to
be achieved.

D is also expressed in the HPT structures. It is
conceivable that the presence of D in the MBH and
pituitary gland ensures that there is no local T
buildup and accurate reading of newly arrived/
formed T molecules. The role of D is illustrated
in studies of the global-DKOmouse, which exhibits
central hypothyroidism, with low circulating levels
of T and T, and normal serum TSH. This is be-
cause Dio inactivation results in neonatal thyro-
toxicosis, later followed by central hypothyroidism
that persists throughout life (). A similar scenario
is seen in mice exposed to high TH levels in utero.
There is an increase in Dio mRNA levels in the
hypothalamus that explains the persistent central
resistance to TH (). In these mice, anterior pi-
tuitary Dio mRNAs is increased, accelerating local
T clearance. A comparable phenotype is observed
in adult humans who were exposed to high TH levels
in utero ().

Overall, the studies in animals with disruption
of the deiodinase pathways indicate that each dis-
ruption triggers adjustments in the HPT function,
namely changes in T, TSH, and TRH, that are
aimed at preserving serum T levels (). That
serum T levels are the main target around which
serum T and TSH are adjusted constitutes a shift

in the paradigm traditionally accepted for the
function of the HPT axis. It is unexpected that the
HPT axis tolerates an elevated serum T to preserve
serum T (–).

The idea that circulating T is detected by the
hypothalamus and the pituitary gland via the D
pathway has been challenged over the years because
of the intrinsic homeostatic nature of D; that is, D
activity accelerates under low serum T conditions,
whereas high serum T levels result in loss of D
activity (). Such D response at the hypothalamus
and/or thyrotrope, if operational, would impair the
detection of changes in serum T, leaving TSH levels
unchanged. However, studies using the TaT mouse
tumor cell line that secretes TSH indicate that the T-
induced loss of D activity in these cells is offset by
the combined effect of D reactivation via deubi-
quitination and a particularly rapid rate of D syn-
thesis. As a result, higher T levels are rapidly
translated into greater D-mediated T production
and suppression of TSHb gene expression; this ex-
plains the operation of the T-mediated TSH feed-
back mechanism (). A similar situation is observed
in the MBH. In vitro analysis of D ubiquitination
driven by hypothalamic and other tissue extracts
revealed less ubiquitinated D when hypothalamic
extracts were used, including when compared with
other areas of the brain (). In other words, D
activity does not fluctuate as much in the MBH in
response to changes in T levels. As a result, the
hypothalamus remains exquisitely sensitive to ele-
vations or drops of circulating T, in contrast to what
is observed in other tissues ().

Given the pivotal role played by D and D in the
HPT axis, it is no surprise that drugs or pathways that
influence the activity of these enzymes have the po-
tential to interfere with the normal feedback mecha-
nism. For example, the widely prescribed cardiac
antiarrhythmic drug amiodarone (AMIO) and its
main metabolite, desethylamiodarone (DEA), elevate
serum TSH levels (). This is because both AMIO
and DEA behave as noncompetitive inhibitors of D
(), and a disruption in the D pathway interferes
with the transduction of the T signal, generating less
T and softening the TSH feedback mechanism. The
underlying effect on TSH is at the pituitary gland given
that in AMIO-treated mice, there is a reduction in
paraventricular TRH mRNA levels (). Quite the
opposite is observed in mice with inactivation of the
fatty acid amide hydrolase (FAAH) gene. These ani-
mals are prone to adiposity and, in humans, mutations
in FAAH are associated with obesity. In these animals
there is a PPARg–mediated increase in MBH Dio
expression, which leads to a localized increase in TH
signaling and suppressed TRH/TSH secretion ().
The reduced energy expenditure in global Faah KO
mice is attributed to lower circulating THs secondary
to a suppressed HPT axis ().
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Is TH signaling restored in patients with
hypothyroidism on therapy with L-T4?
A significant clinical concern is whether the loss of
adjustable thyroidal T secretion, as seen in patients
who are hypothyroid, compromises the ability to
preserve circulating T, and therefore systemic TH
signaling (, , ). In other words, can deiodinases
alone preserve circulating T homeostasis in the ab-
sence of a functional thyroid gland? If not, could this
compromise systemic TH signaling and be a con-
tributing factor to residual “hypothyroid-like” symp-
toms among some of the L-T-treated patients with
hypothyroidism?

Historically it was assumed that circulating T is
fully normalized in L-T–treated patients (–).
However, the issue has been revisited through very
large studies, and serum T levels were found to be
lower than normal in many clinically euthyroid pa-
tients maintained on L-T. A cross-sectional study
involving ~ patients with athyreosis with normal
serum TSH levels on L-T monotherapy revealed that
the distribution of serum FT levels shifted to the left
(lower levels) and that of FT levels shifted to the
right (higher levels) compared with the distribution
patterns of ~ controls (). In a subsequent large
national study using cross-sectional data from the US
National Health and Nutrition Examination Survey,
L-T–treated participants had higher serum total and
FT and lower serum total and FT than did controls
when matched for sex, age, ethnic background, and
serum TSH. Thus, the current consensus is that al-
though L-T–treated patients maintain normal serum
TSH levels, they also exhibit slightly lower T levels
and slightly higher T levels than do control in-
dividuals (). Although studies with a relatively
small number of patients suggest that monotherapy
with L-T is able to normalize serum T without
suppressing serum TSH (), the larger studies failed to
replicate these findings. Normal serum T levels can be
achieved with L-T alone, but at the expense of having
relatively lower/suppressed serum TSH (, ).

What are the underlying mechanisms that explain
the relatively lower levels of T in L-T–treated pa-
tients? This has been addressed in rodent models,
including in L-T–treated thyroidectomized rats (,
). In these rats, the daily dose of L-T that nor-
malizes serum TSH results in serum T levels above
the reference range and lower than normal serum T
levels. Indeed, only combined therapy with L-T and
L-T normalize serum T, T, and TSH concentra-
tions simultaneously (). Studies of the D pathway
in L-T–treated mice indicate that tissue-specific
differences in D ubiquitination account for the
high T/T serum ratio in L-T–treated thyroidec-
tomized rats (). L-T administration at doses that
normalize plasma TSH reduces whole-body D-
dependent T to T conversion, and a larger frac-
tion of the circulating T is derived from the D

pathway. Thus, as the dose of L-T given to thy-
roidectomized rats is increased, there is relatively less
T being produced via the D pathway in peripheral
tissues. Notwithstanding, D activity and T pro-
duction in the hypothalamus of the same animals are
only minimally affected by L-T treatment. This
difference in the way D responds to therapy with
L-T creates a situation in which TSH secretion is
normalized whereas circulating T is not (Fig. ).

In vitro analysis of D ubiquitination driven by
different tissue extracts indicates that the hypothala-
mus is less capable of maintaining D in the ubiq-
uitinated form. In contrast to other D-expressing
tissues, the hypothalamus exhibits less D down-
regulation when exposed to T. As a consequence,
fluctuations in plasma T are faithfully transduced as
variations in local TH signaling because the rate of
local T to T conversion is kept stable in the face of
fluctuating plasma T levels. This is also supported by
findings obtained in the TH action indicator mouse in
which hypothalamic TH signaling in the hypothala-
mus is affected by hypothyroidism (). These studies
reveal that tissue-specific differences in D ubiq-
uitination are an inherent property of the HPT
feedback mechanism, explaining why replacement
with L-T alone results in relatively lower plasma T
levels (Fig. ).

The reduction in circulating T seen in L-T–
treated patients is modest. There is understandable
skepticism as to whether this is sufficient to cause even
mild hypothyroidism. This was tested in a preclinical
animal model, that is, thyroidectomized rats receiving
L-T at doses that normalize serum TSH but not
serum T (). Previous studies in similarly treated
animals demonstrated that T content in most tissues
is not normalized (). Furthermore, an in-depth
analysis of multiple T-dependent markers revealed
widespread signs of hypothyroidism, including an
~% reduction in mitochondrial content in liver and
SKM, and a failure to normalize serum cholesterol,
which remained ~% elevated in L-T–treated rats.
The cerebral cortex, cerebellum, and hippocampus
were also analyzed for the expression of  T-
responsive genes, but only  genes were normalized;
all the other genes indicated reduction in TH signaling,
despite normal serum TSH. Notably, all of these pa-
rameters were normalized in rats that received com-
bined L-T and L-T treatment, which normalized
serum T levels ().

Evidence that a similar scenario happens in
L-T–treated patients already exists. In the US Na-
tional Health and Nutrition Examination Survey,
L-T–treated participants with normal serum TSH
differed in  out of  objective and subjective
measures, including higher body mass index, despite
reportedly consuming fewer calories per day per ki-
logram of body weight (). This is likely explained
by the fact that these patients have lower energy

17doi: 10.1210/er.2018-00275 https://academic.oup.com/edrv

REVIEW

http://dx.doi.org/10.1210/er.2018-00275
https://academic.oup.com/edrv


expenditure (, ) and lower total metabolic
equivalents (). Additionally, they were more likely
to be taking beta-blockers, antidepressants, and statins.
Indeed, a systematic review of publications of overt
hypothyroidism in which participants were treated
with L-T and had normal serum TSH levels fol-
lowed by meta-analysis showed that L-T–treated
participants had . 6 . mg/dL higher serum low-
density lipoprotein (LDL) levels and .6 .mg/dL
higher serum total cholesterol levels compared with
controls. In studies that did not concomitantly assess
healthy controls, serum LDL levels were  6
.mg/dL (reference range,,mg/dL) and serum
total cholesterol levels were  6 . mg/dL (ref-
erence range, , mg/dL) (). Taken together,
these studies support the idea that L-T–treated
individuals, with normal serum TSH, exhibit ob-
jective signs of mild reduction in systemic TH sig-
naling ().

It is intriguing that the ThrAla-DIO poly-
morphism has been linked to altered responsiveness of

patients with hypothyroidism to TH replacement
therapy (, ). In a double-blind clinical trial,
ThrAla-DIO polymorphism carriers achieved better
quality of life in response to combination therapy with
L-T and L-T compared with L-T alone (). This
supports the idea that ThrAla-DIO polymorphism
carriers have systemic or localized dampening of TH
signaling that can be overcome using L-T. This
outcome was reproduced in a subsequent study in
which the compound ThrAla-DIO and MCT
polymorphisms enhanced patients’ preference for
L-T plus L-T replacement therapy (), but not in
all studies (). Subsequent studies that focused on
circulating T levels in L-T–treated thyroidecto-
mized carriers of the ThrAla-DIO polymorphism
support the idea that such patients might be at a
greater risk of systemic and/or localized hypothy-
roidism (). However, why would such a risk be
detected only after hypothyroidism is diagnosed? The
answer might be in the studies of mice with com-
bined Dio and Dio deficiencies. These animals
maintain circulating T levels despite their inability
to convert T to T thanks to an adjustment in
thyroidal T secretion (). Carriers of the ThrAla-
DIO polymorphism do well for as long as their
thyroid gland is functional, probably because their
HPT axis adjusts thyroidal T secretion up to
compensate for deficiencies in the D pathway ().
Once they develop hypothyroidism and are treated
with L-T, they no longer have the ability to activate
the thyroid and compensate, and hence become
symptomatic.

The central nervous system
TH is essential for CNS development and function
(, ), with documented effects on proliferation,
differentiation, migration, synaptogenesis, and mye-
lination (). In fact, TH signaling not only affects
neuronal development throughout embryogenesis but
also in the adult brain, regulating neural stem cell
function in the hippocampus and the subventricular
zone, the main sites of neurogenesis in the adult
mammalian brain (, ). Despite that D gen-
erates most T in the brain (, ), Dio in-
activation, globally or locally, results in a limited
neurologic phenotype, suggesting the existence of
compensatory mechanisms that minimize functional
abnormalities caused by the absence of D-generated
T (). Indeed, the brain has a sophisticated range
of mechanisms to control TH signaling that could
potentially offset a Dio deficiency, including dif-
ferent sets of transporters, D and TRs (–)
(Fig. ). In the case of TRs, TRa is the isoform that
predominates in the brain, with some areas also
expressing TRb ().

Tissue architecture also affects how deiodinases
and transporters modify TH signaling in the brain.
Dio is typically expressed in glial cells whereas

Figure 7. TSH levels are normalized to slightly higher circulating
T4/lower T3 in LT4-treated patients with hypothyroidism. TSH
secretion is defined by the balance between the positive input
provided by TRH secretion and the negative input provided by
circulating T4 and T3 levels. In LT4-treated patients with
hypothyroidism the negative input is based on a slightly higher
circulating T4/T3 ratio when compared with normal individuals.
This is because of an imbalance between D2 ubiquitination in the
hypothalamus vs the rest of the body. While outside the
hypothalamus T4-induced D2 ubiquitination limits T3
production; in the hypothalamus–pituitary axis this mechanism
is less efficient, preserving D2-mediated T3 production even as
circulating T4 rises with LT4 administration. A growing body of
work suggests that the relatively lower circulating T3 levels in
LT4-treated patients with hypothyroidism are clinically relevant.
LT4-treated patients weigh ~10 pounds (4.5 kg) more, exhibit
higher serum cholesterol levels, are more likely to be on statin
and antidepressive medications, and display a slower rate of
energy expenditure. See reviews for more details (86, 87).
[Adapted with permission from “Hypothyroidism, thyroid
hormones and deiodinases.” www.BiancoLab.org.]
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neurons express Dio (, –). Details about
this system were obtained after it was modeled in vitro
using a coculture system of D-expressing human
glioma cells and D-expressing human neuroblastoma
cells. In this system, glial cell D activity produced T
that acted in a paracrine fashion to induce T-
responsive genes in the cocultured neurons. D ac-
tivity in the neurons responded to known stimuli and
modulated T effects (). Of course, these signaling
pathways require transit of T and T across cell
membranes. Glial cells are likely to take up T through
OATPC and release T that acts in neighboring
neurons (, ). Additionally, limited amounts of
circulating T also reach neurons through MCT,
contributing with ~% of the intracellular T in the
cerebral cortex. The resulting relatively high content of
T causes higher than usual occupation of TRs in the
brain, close to saturation levels. In some rare cases TH
transport is limiting, such as in patients with Allan–
Herndon–Dudley syndrome, in whom neurons that

rely on MCT for T transport have diminished TH
signaling despite normal TH levels in the circulation
(, ).

The presence of D in neurons at first seems
puzzling and counterintuitive. Why would neurons
inhibit entry of T if THs are so critical for brain
development and function? Indeed, this does not
seem to be the case. Studies performed in rats using
labeled T and T molecules indicate that TRs are
almost fully occupied with T (). In other words,
glial cells produce so much T that almost all TRs in
the brain are bound to T. This suggests that D
activity in neurons does not limit T entry or access
to the neuronal nucleus. Although having control
over both local production and catabolism of T is
intuitively advantageous, an additional hypothesis
that remains to be tested is that D in neurons serves
to minimize cellular exit of T, preventing neurons
from becoming a secondary source of T in the
CNS.
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Figure 8. Transport and metabolism modulate TH signaling in the brain. T4 crosses the BBB through Oatp1c1, reaching astrocytes
where it is converted to T3 via D2. T3 exits astrocytes and is likely to enter neurons via MCT8. Circulating T3 can also reach neurons
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Development of sensory structures and function
During development, deiodinase expression is timed
for each tissue to minimize or activate local TH
signaling according to a predefined developmental
program. The development of sensory structures in the
brain constitutes elegant models in which deiodinase
expression exerts a time and spatial control of TH
signaling (–). TH acting via TRb controls
maturation of auditory function () by regulating
the expression of fast-activating potassium conduc-
tance in the cochlea (). During the fetal and
neonatal period, there is relatively high D activity in
the immature cochlea that dampens TH signaling
(). Later, in the postnatal phase, cochlea Dio
expression and D activity decrease at the same time
that D activity rises and peaks around postnatal day ,
only to decline by postnatal day . Peak local TH
signaling occurs at a critical stage of cochlear devel-
opment, the absence of which causes an auditory
phenotype similar to TRb inactivation (). In ad-
dition to deiodinases, TH transporters also play a
critical role in this process. Dio and TRb are not
coexpressed in the same cochlear cells. Dio is
expressed in periosteal connective tissue whereas TRb
expression is expressed in the sensory epithelium.
Thus, D generates T in the connective tissue that
acts in a paracrine-like fashion on the greater epithelial
ridge and sensory epithelium residing inside the bony
labyrinth to activate TRb (). This special com-
partmental anatomy of the cochlea hints to the ex-
istence of transport mechanisms that convey T to
target tissues. Different TH transporters are involved:
LAT is located in the cochlear blood vessels and
sensory hair cells, whereas MCT is found in the
greater epithelial ridge and other structures, partly
overlapping with the TRb expression; MCT and
OATPC can also be found in the cochlea ().
Indeed, mice with inactivating mutations in Mct and
Mct develop hearing loss (). These animals have
retarded development of the sensory epithelium,
compounded with a progressive degeneration of co-
chlear hair cells. This phenotype is largely rescued with
the administration of T, confirming the role played by
TH transporters and TH signaling in the cochlea
development and function ().

In the development of the visual system, local TH
signaling plays a role in defining the fate of distinct
populations of cone photoreceptors in the retina.
Rodents have dichromatic vision with two types of
photoreceptors that are sensitive to middle (M, green)
or short (S, blue) wavelengths, depending on the
photopigment they express. Cone photoreceptors
throughout the retina have the potential to follow a
default S-cone pathway but, upon activation of TRb,
they commit to an M-cone identity (). Notably, TH
signaling is symmetrically distributed in the retina at
birth as S-pigment expression begins, due to minimal
TH signaling caused by Dio expression. Over time,

TH signaling is strengthened in the dorsal retina at the
time of M-pigment onset (postnatal day ), illus-
trating how the ratio and patterning of cone types may
be determined by TH availability during retinal de-
velopment (, ). The study of human retinal
organoids confirmed that similar deiodinase-mediated
control of TH signaling takes place in humans. In these
organoids, S cones are specified first, followed by red
(L)/M cones; TH signaling controls this temporal
switch through timed expression of DIO and DIO
within the retina. This ensures that early low TH
signaling specifies S cones and high TH signaling later
produces L/M cones (). Notably, the fate of retinal
cones continues to be affected by the deiodinases and
TH signaling even during adulthood (, ).
Suppression of TH signaling by overexpression ofDio
preserves cones in a mouse model of retinal de-
generation (). Indeed, Dio inactivation improved
cone survival and function in these mouse models.
Additionally, cellular oxidative stress responses were
increased in animal models of retina degeneration,
which were improved by Dio deficiency and wors-
ened by treatment with T. These studies suggest that
dampening TH signaling in degenerating retinas
might constitute a therapeutic approach aimed at cone
preservation ().

Motor activity
TH signaling controls formation of the transient ex-
ternal germinal layer in the cerebellum. Both DIO
and DIO are expressed in the cerebellum, but DIO
expression predominates at embryonic and neonatal
stages, indicating that during this period local TH
signaling is limited. If this is disrupted, as in the global-
DKO mouse, there are locomotor behavioral abnor-
malities manifested as impaired ability in descending
a vertical pole (). Following the perinatal period of
reduced TH signaling, Dio expression increases, and
the enhanced local TH signaling plays a role in the adult
cerebellum. Adult global-DKO mice exhibit di-
minished agility and an altered global gait pattern (they
walk slower, with shorter strides and with a hindlimb
wider base of support than do wild-type mice). There is
also impaired coordination and prehensile reflex and
decreased muscle strength (). This phenotype in the
global-DKO mouse is associated with structural cer-
ebellar alteration, with reduced foliation, accelerated
disappearance of the cerebellar external germinal layer,
and premature expansion of the molecular layer at
juvenile ages.

Cognition and mood
DIO and DIO are expressed in multiple brain areas
involved in behavioral and mood processes, with
important roles played by local TH signaling. Indeed,
global-DKO mice, which have reduced brain T
content and TH signaling (), have increased anxiety
and fear memory (). Furthermore, a mouse in
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which Dio has been selectively inactivated in astro-
cytes (Astro-DKO) has anxiety/depression-like be-
havior (). Notably, the opposite phenotype, that is,
hyperactivity and significantly decreased anxiety-like
behavior, was observed in the global-DKO mouse, a
model of enhanced TH signaling in the brain ().

The effects of a more subtle impairment of T to
T conversion in the brain were studied in a mouse
carrier of the ThrAla-Dio polymorphism, in which
there was an ~% reduction in D-mediated T
production (). Despite normal serum T levels,
microarray analyses of the Ala-Dio brain revealed
reduced TH signaling in the striatum, amygdala,
prefrontal cortex, hippocampus, and cerebellum ().
These mice underwent testing for mood and behavior
and were found to have higher exploratory and more
risk assessment behavior than did control mice. The
pattern of higher mobility in Ala-Dio mice was
maintained during the highly anxiogenic tail sus-
pension studies (). Notably, once settled in the
environment, Ala-Dio mice traveled ~% shorter
distances and slept ~.-fold longer than did control
mice. Cognition in these animals was tested through
standard memory tests, with the Ala-Dio mice
failing the -hour recall test. Increasing TH signaling
with L-T administration partially rescued the Ala-
Dio mouse phenotype, confirming that localized
reduction in TH signaling plays a role in the phe-
notype ().

In contrast, the localized increase in brain TH sig-
naling seen in the global-DKO mouse was associated
with a significant increase in aggression-related behaviors
and mild deficits in olfactory function (). Addition-
ally, % of global-DKO dams manifested no pup-
retrieval behavior and increased aggression toward
newborns. The abnormal social behaviors of global-
DKO mice are associated with sexually dimorphic al-
terations in oxytocin and arginine vasopressin, two
neuropeptides that affect social interactions. Global-
DKO mice exhibited lower serum oxytocin and argi-
nine vasopressin levels, as well as abnormal expression of
both peptides and their receptors in the neonatal and
adult hypothalamus (). Developmental overexposure
to T as a result of Dio inactivation changed hypo-
thalamic gene expression of more than a thousand genes
in postnatal day  mice. The alterations in gene ex-
pression extended to other brain regions and, in
adulthood, were associated with decreased anxiety-like
behavior, increasedmarble burying, and reduced physical
activity (). Overall, these studies indicate that Dio
and Dio are important in establishing mood, with Dio
also involved in aggression and maternal behaviors.

Traumatic and hypoxic-ischemic brain injury
TH signaling in the brain can be disrupted by a severe
insult such as traumatic brain injury (TBI) (). In
rats, TBI is associated with reduction in MCT and
Dio mRNA levels in the brain, as well as an elevation

of Dio mRNA levels, which is compatible with a
reduction in TH signaling. The cortex, compared with
the hippocampus and cerebellum, sustained the
greatest injury and displayed the most significant
change in gene expression as a result of injury ().
Insults such as ischemia or hypoxia, in which there is
induction of DIO as a result of hypoxia-inducible
factor (HIF)a activation in neurons, also leads to
reduced TH signaling (). Hypoxia (HIFa) in-
duction of DIO has also been observed in the hy-
pertrophic ventricular myocardium (, , ) and
in the postinfarction myocardium (, ). DIO
induction in the brain during hypoxic or ischemic
disease is associated with incorporation of D into the
nuclear membrane, which in cell models reduces the
paracrine effects of T (). After unilateral ischemia
in the rat brain, D protein is increased predominantly
in the neuronal nuclei in the pyramidal and granular
ipsilateral layers, as well as in the hilus of the dentate
gyrus of the hippocampal formation (). Similar
observations were made in hippocampal neurons in
culture as well as in a human neuroblastoma cell line
(). Incorporation of D into the nuclear membrane
dampens TH signaling and may reduce brain damage
caused by hypoxic or ischemic disease. Notably, con-
centration of D in the nuclear membrane of neurons
was also seen in hippocampal sections of mice after
brain hypoxia was induced by status epilepticus, an
abnormally prolonged seizure that lasted  hours ().

Other studies in mice, however, indicate that is-
chemia increases D activity in cerebral cortex and
striatum, whereas D activity remains stable (). In
another study, D activity was induced in a cell model
by hypoxia without changes in Dio mRNA levels
(). In this case, hypoxia stabilized and prolonged
the half-life of D by decreasing its susceptibility to the
ubiquitin–proteasome pathway, whereas D was not
affected. TBI also increases Dio mRNA expression,
although it is not clear howmuch of this effect is due to
changes in plasma and local levels of TH (, ). In
the mouse model of status epilepticus, there was also a
rapid increase in Dio expression and reduction in
Dio expression in hippocampus, amygdala, and
prefrontal cortex (). An analysis of the hippo-
campal transcriptome of mice undergoing status
epilepticus revealed changes in a number of genes,
including those involved with response to oxidative
stress, cellular homeostasis, cell signaling, and mito-
chondrial structure. In contrast, when Astro-DKO
mice underwent status epilepticus, the highly induced
genes in the hippocampus were related to in-
flammation, apoptosis, and cell death ().

Collectively, these studies suggest that a severe
brain insult affects Dio and Dio expression, most of
the time in a reciprocal fashion, modifying TH sig-
naling in localized brain areas, which could affect the
balance between adaptive and maladaptive mecha-
nisms. The reduction in TH signaling seen during
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hypoxic-ischemic events reduces energy expenditure
and oxygen consumption, and it could be interpreted
as an adaptive mechanism (). Indeed, adminis-
tration of the D inhibitor rT in rats undergoing
middle cerebral artery occlusion reduced neuronal
injury markers, infarct size, and neurologic deficit.
Similarly, rT increased cellular survival in primary
cerebral neurons under oxygen glucose deprivation/
reoxygenation stress (). However, it is clear that not
all types of brain injuries/insults result in the same
changes in deiodinase and TH signaling. Notably, in
the setting of TBI, treatment with T significantly
increased the expression of mRNA from B-cell lym-
phoma  (Bcl), vascular endothelial growth factor
(VEGF)A, SRY box  (Sox), and neurotrophin, genes
important for neuronal survival and recovery ().
Also, under hypoxic conditions, treatment with T
accelerated by  hours the expression of hypoxia-
mediated genes (VEGF, enolase, HIFa, c-Jun).
Thus, although it is clear that injury to the brain
reduces TH signaling, more studies are needed to
establish whether these changes are adaptive or
maladaptive, and a unifying hypothesis can be for-
mulated ().

Demyelination syndromes
Demyelinating disease is any disease of the nervous
system in which the neuronal myelin sheath is
damaged. This damage impairs the transmission
of signals that, in turn, impairs sensation, move-
ment, cognition, or other functions. Oligodendrocytes
produce myelin, and investigators have looked for
molecules that promote proliferation, differentiation,
and maturation of oligodendrocyte precursor cells
(OPCs). TH signaling has a well-established role in
promoting oligodendrocyte differentiation and mat-
uration, and it has been used in some settings to
accelerate remyelination (–).

At the same time, TH signaling also plays a role
upstream of the OPC maturation, namely in the
differentiation of neuronal stem cells located in the
subventricular zone into OPCs. Investigators noted
that in the adult subventricular zone, the fate of
differentiating neuronal stem cells that can give rise
to neurons or OPCs depends on Dio expression
(). Those cells that express Dio experience a
transient period of reduced TH signaling that pro-
motes differentiation of stem cells into OPCs. As a
result, there is functional remyelination and restored
neural conduction, with important clinical impli-
cations (). Thus, D-mediated dampening of TH
signaling accelerates generation of OPCs whereas
exposure of OPCs to T accelerates maturation into
oligodendrocytes.

Intraventricular hemorrhage (IVH) that compro-
mises blood flow to different brain areas remains a
major cause of white matter injury in preterm infants.
TH signaling seems to play a role in how the brain

responds to such injury. In both autopsy materials
from human preterm infants and a rabbit model of
IVH there was a reduction in D levels, whereas D
levels were increased compared with controls without
IVH; TRa expression was also increased in infants
with IVH (). Notably, treatment with TH accelerated
recovery, which included proliferation and maturation
of OPCs, augmented myelination, and restored neu-
rologic function in pups with IVH. Furthermore, in
TH-treated human preterm infants the density of
myelinating oligodendrocytes was almost doubled as
compared with controls. Thus, the combined elevation
in D and reduction in D activity levels decreases TH
signaling, which could be worsened by the increase in
unliganded TRa. Given that TH promotes neurologic
recovery in IVH, TH treatment should be further
explored to improve the neurodevelopmental out-
come of preterm infants with IVH ().

Brain degenerative disease
Carriers of the ThrAla-DIO polymorphism exhibit
alterations in the transcriptome of the temporal lobe,
which are typically associated with neurodegenerative
diseases, such as amyloid-b peptide processing ().
This observation led to a study designed to test the
hypothesis that carriers of the ThrAla-DIO poly-
morphism have increased risk for incident Alzheimer’s
disease (AD). Although this locus has not been
identified in previous genome-wide association studies
(–), the candidate gene approach could still
lead to identification of a moderate association that
provides insight into AD pathogenesis (, ).
Knowing that the epidemiology and tissue pathology
of AD vary by ethnicity (), large cohorts comprised
of thousands of blacks were compared with European
Americans. The assessment indicated that black car-
riers of ThrAla-DIO have .-fold higher odds of
developing AD. In a second cohort, ThrAla-DIO
blacks exhibited .-fold higher odds of developing
cognitive impairment. In contrast, in European Amer-
icans there was no association between ThrAla-DIO
and AD or dementia ().

These findings prompted more detailed studies of
cells expressing Ala-D, which led to the discovery
that D is normally a cargo protein in ER-Golgi in-
termediary compartment (ERGIC) vesicles, recycling
between ER and Golgi. The Thr to Ala substitution
(Ala-D) causes ER stress and activates the unfolded
protein response. This pushes Ala-D to the Golgi
apparatus via the adaptor protein ERGIC, and ac-
cumulation in the trans-Golgi. Remarkably, all of these
changes are restored by eliminating ER stress with the
chemical chaperone -phenyl butyric acid (-PBA)
(, ). A detailed study of mice carrying the
ThrAla-DIO polymorphism revealed that different
areas of their brain also exhibit ER stress and activation
of the unfolded protein response, which could con-
tribute to the phenotype of impaired cognition and
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motivation for physical activity (). Furthermore,
treatment with -PBA for  days reversed most of this
phenotype, indicating a potential mechanism through
which cognition is affected in these animals ().

Metabolic control
TH synergizes with the sympathetic nervous system to
markedly accelerate the rate of energy expenditure,
which in patients with severe hypothyroidism can fall
as much as ~% and in thyrotoxic patients can be
increased by ~%, an approximately threefold ex-
cursion over the hypothyroid baseline (, ). Most
effects of T are direct and take place in metabolically
relevant tissues, such as BAT, liver, SKM, heart, and
pancreatic islets, where dynamic regulation occurs
through the action of the deiodinases. Important
metabolic effects of T have also been reported in
different areas of the brain. For example, central
administration of T promotes de novo lipogenesis
in liver and lipid oxidation in BAT through the
autonomic nervous system (, ). Evidence
exists that the TH derivative ,-diiodo-L-thyronine
also exerts thermogenic effects by directly influenc-
ing mitochondrial activity (, ). However, the
pathways leading to the endogenous synthesis of
this molecule are presently unknown, downplaying
its physiological role and potential as a signaling
molecule.

Mice with targeted disruption of deiodinases
exhibit a variety of metabolic phenotypes. The ex-
pression of Dio and Dio in the MBH strategically
places both enzymes at the crossroads of neural
regulation of metabolism. For example, studies in mice
show that food deprivation increases hypothalamic
Dio mRNA levels and D activity. Dio mRNA levels
are also increased in the MBH of mice fasted for
 hours (). Hence, this localized increase in
TH signaling could explain the reduction in Trh
mRNA observed in fasted rats (, ). Deiodinase-
mediated control of TH signaling in the hypothalamus
might also play a role in regulating the torpor state, in
which there is a dramatic reduction in metabolism and
in body temperature, diminishing the energy require-
ments of the animal (). In hamsters, hypothalamic
Dio expression is decreased during spontaneous daily
torpor as well as fasting-induced torpor, indicating
reduced hypothalamic TH signaling in these animals
(). Additionally, reciprocal expression of Dio and
Dio in the MBH was shown to be critical for pho-
toperiodically induced gonadal growth in birds ().
Long photoperiods induce hypothalamic Dio ex-
pression and simultaneously reduce Dio expression,
indicating that long days enhance TH signaling in the
MBH (, ). Notably, the global-DKO mouse
exhibits increased TH signaling in the hypothalamus,
with abnormal expression and T sensitivity of genes
in the melanocortin system, suggesting leptin re-
sistance. They also have decreased adiposity, reduced

BAT size, and accelerated fat loss in response to
treatment with L-T. Notably, global-DKO mice
display increased locomotor activity and an increased
rate of energy expenditure along with expanded night-
time activity periods, suggesting a disrupted circadian
rhythm ().

Dynamic changes in TH signaling affect adaptive
thermogenesis and metabolism
The ability to thermoregulate is an evolutionary ad-
vantage of mammals. In the warm climate, most
animals can dissipate heat efficiently. However, when
exposed to cold, mammals not only minimize heat
losses but at the same time increase heat production
by accelerating their metabolic rate, a process known
as adaptive thermogenesis (). This is accom-
plished in large part due to release of norepinephrine
(NE) in a number of tissues, including BAT, which
upregulates cAMP-responsive genes, such as Dio,
PGCa, and UCP (, ) [Fig.  ()]. All three
b-adrenergic receptor subtypes respond to NE and
increase cAMP production, but each play slightly
different roles in thermogenesis and metabolic control
(–).

Dio is a cAMP-responsive gene, hence cold ex-
posure enhances local TH signaling in BAT, essential
for adaptive thermogenesis (). When exposed to
cold, thyroidectomized rats become hypothermic and
fail to induceUCP expression; this response is limited
to ~% of what is observed in controls. L-T is
particularly effective in restoring thermogenesis given
its activation to T in BAT via D (). Circulating
T is important, but NE-induced several-fold activa-
tion of D activity and local T production is critical
for thermogenic function. Local TH signaling am-
plifies cAMP production and directly induces UCP
expression (, , ) and the activity of malic
enzyme, glucose--phosphate dehydrogenase, and
acetyl–coenzyme A carboxylase, key enzymes involved
in BAT lipogenesis (–). The latter is likely to
involve T induction of the carbohydrate response
element–binding protein, a T-target gene in BAT that
mediates glucose regulation of key lipogenic genes
(). The overwhelming data available on the role of
Dio in BAT catapulted this gene into the thermogenic
program that includes PGCa and UCP ().

BAT expresses both TRa and TRb (). Indeed,
when a selective TRb agonist is given to hypothyroid
mice there is stimulation of the BAT thermogenic
program, for example, induction of Dio, UCP, and
PGCa, but these animals fail to generate normal
amounts of cAMP and to produce heat in response to
NE (). These observations suggest that TH sig-
naling augments BAT thermogenesis via a coordinated
effort between TRa and TRb. Induction of the
thermogenic program depends on TRb, whereas
potentiation of cAMP generation and heat production
in response to NE infusion cannot be elicited by
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treatment with TRb agonist alone, depending on
activation of TRa as well (). It is notable that
expression of the thermogenic program in white ad-
ipose cells, also known as browning of adipose tissue,
can also be activated via stimulation of TRb ().

Dio2 inactivation and BAT thermogenesis.
Inhibition of BAT D with iopanoic acid in vivo ()
and in freshly isolated brown adipocytes decreases
adrenergic induction of UCP expression () and
local lipogenesis (). Studies in the global-DKO
mouse revealed an impaired thermogenic response to
cold and to NE infusion (). These animals survive
by compensating for reduced TH signaling with in-
creased sympathetic activity () and shivering, a
behavior not typically observed in cold-exposed ro-
dents (). Room temperature of °C is sufficiently
low to activate cold-induced thermogenesis in small
mammals. Therefore, the overall compensatory in-
crease in sympathetic activity renders global-DKO
mice resistant to diet-induced obesity, even when kept
at room temperature. Remarkably, this phenotype is
reversed when NE turnover is minimized by accli-
matization at thermoneutrality (°C), which “turns
off” sympathetic activity to the BAT. As a result of the
unopposed reduction in TH signaling, global-DKO
mice become markedly sensitized to diet-induced
obesity, not only gaining excessive weight but also
developing severe hepatic steatosis ().

Dio2 plays a role in defining BAT identity
during development. BAT development is a co-
ordinated process during which local TH signaling
reflects synchronized changes in deiodinase expression
and activity. In the mouse, BAT develops between
embryonic day (E). and E., during which time
Dio expression is increased and Dio expression is
decreased, thus increasing local TH signaling ()
(Fig. ). Targeted disruption ofDio results in defective
brown adipocytes, including impaired expression of
genes in the adipogenic program (fatty acid–binding
protein , cell death–inducing DNA fragmentation
factor, a subunit–like effector A, and acyl–coenzyme
A synthetase long-chain family member ) and
thermogenic identity of these cells (Ucp, Pgca, and
Dio). Global-DKO preadipocytes exhibit delayed
maturation, with fewer cells terminally differentiating
into brown adipocytes ().

Other metabolic signals affect Dio2 expres-
sion and local TH signaling. A number of en-
dogenous and exogenous molecules modulate BAT
function via the Dio pathway, including bile acids
(), flavonols (), chemical chaperones (),
and the adipokine adipocyte-specific fatty acid–
binding protein (AFABP) (). Bile acids activate
BAT D and UCP-mediated thermogenesis via
the G-protein–coupled bile acid receptor  (TGR)
pathway; TGR is a G-protein–coupled receptor that

Figure 9. Local TH signaling accelerates BAT thermogenesis. BAT is a specialized organ that produces heat in response to cold exposure
or excessive caloric intake (362). BAT expresses both TRa and TRb (365). Heat is generated due to mitochondrial uncoupling triggered
by the sympathetic nervous system [i.e., NE-induced adenylyl cyclase (AC) activation and cAMP production] that also stimulates Dio2,
increases T3, and leads to the induction of T3-responsive thermogenic genes, including Ucp1. Moreover, D2-generated T3 also
stimulates BAT lipogenesis, which generates fatty acids used to sustain accelerated mitochondrial activity. Hypothyroid animals have
impaired the ability to thermoregulate in the cold due to decreased BAT function. Global-D2KO animals exhibit a reduction in the
expression of genes that define the tissue thermogenic identity (i.e., Ucp1, Pgc1a, and Dio2) and exhibit impaired oxidative capacity. See
reviews for more details (350, 362–364). [Adapted with permission from “Hypothyroidism, thyroid hormones and deiodinases.”
www.BiancoLab.org.]
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accelerates cAMP production and BAT thermogenesis,
protecting against diet-induced obesity and insulin
resistance. Treatment of human skeletal myocytes with
bile acid increases D activity and O consumption
through a cAMP-dependent process (). In fact, the
TGR selective agonist INT- is efficacious in vivo,
increasing energy expenditure and reducing adiposity
in a mouse model of diet-induced obesity (). Oral
supplementation of the bile acid chenodeoxycholic
acid in  healthy female subjects for  days increased
BAT activity and whole-body energy expenditure
(). Additionally, the study of  healthy subjects
and  patients with liver cirrhosis revealed a positive
correlation between circulating bile acids and whole-
body energy expenditure (). In vitro treatment of
primary human brown adipocytes with chenodeox-
ycholic acid or specific TGR agonists increased mi-
tochondrial uncoupling and DIO expression, an
effect that was absent in human primary white adi-
pocytes (). Along the same lines but through a
different pathway, kaempferol and other flavonols
stimulate DIO expression via a cAMP-mediated
mechanism in primary cultures of human skeletal
myocytes, leading to D-mediated T production,
expression of thermogenically relevant genes, and
acceleration of O consumption ().

ER stress constitutes a link between metabolic
homeostasis and D-mediated TH signaling (,
). ER stress is present when its functions are
affected by factors such as buildup of misfolded
proteins, disruption of redox state, or calcium homeo-
stasis (). In general, cells respond to ER stress
in a number of ways, including blockade of
mRNA translation and protein synthesis, which then
minimizes ER stress (). From a metabolic per-
spective, ER stress is recognized as an important
pathway that can be triggered by an HFD and obesity;
in adipose tissue, ER stress downregulates insulin
sensitivity (). In this regard, it is notable that ER
stress leads to rapid loss of D activity, to as low as %
of control levels, without affecting Dio mRNA levels;
this drop in D activity is accompanied by a slowdown
in intracellular D-mediated T production, hence TH
signaling (). This drop in D levels involves
eukaryotic initiation factor , which blocks Dio
mRNA translation, hence D synthesis. These data
seem to be clinically relevant. For example, primary
human airway cells normally exhibit D activity.
However, in cells obtained from patients with cystic
fibrosis, the ensuing ER stress results in complete loss
of D activity (). Notably, the chemical chaperones
tauroursodeoxycholic acid (TUDCA) and -PBA, both
molecules that minimize ER stress, increase Dio
expression, D activity, and local T production ().
In brown adipocytes, treatment with TUDCA or
-PBA enhances TH signaling, expression of T-
dependent genes, and acceleration of O consump-
tion. In control mice, but not in global-DKO mice,

treatment with TUDCA accelerates BAT D activity,
lowers the respiratory quotient, and normalizes the
glucose intolerance associated with feeding an HFD
().

Human BAT is sensitive to TH signaling.
Dio is present in interscapular BAT depots in pre-
mature and full-term neonatal humans in amounts
comparable to rodents in terms of onset of develop-
ment and peak distribution (). In adult humans
with positive fluorodeoxyglucose uptake in positron
emission tomography scans, biopsies have proven the
presence of D at levels higher than in corresponding
white adipose depots (). BAT in humans seems to
be responsive to TH signaling as studied in a patient
with thyroid cancer who underwent positron emission
tomography and CT scanning while systemically hy-
pothyroid and during suppressive treatment with
L-T. The transient systemic hypothyroid state sup-
pressed fluorodeoxyglucose uptake in BAT that had
been previously active during the systemic hyper-
thyroid state created by suppressive L-T therapy ().

Metabolic roles of Dio2 in tissues other than
BAT. Studies in mice with fat-specific, Astro-specific,
or skeletal muscle–specific DKO have shed light on
the role of Dio in metabolically relevant tissues. The
Astro-DKO mice exhibit lower diurnal respiratory
quotient and greater contribution of fatty acid oxi-
dation to energy expenditure, but no differences in
food intake. In contrast, the mice with fat-specificDio
inactivation (Fat-DKO) exhibit greater contribution
of carbohydrate oxidation to energy expenditure, as
illustrated by a sustained (-hour) increase in re-
spiratory quotient, food intake, glucose tolerance, and
insulin sensitivity. Furthermore, Fat-DKO animals
that were kept on an HFD gained more body weight
and fat, indicating impaired BAT thermogenesis and/
or inability to oxidize the fat excess. Acclimatization of
Fat-DKO mice at thermoneutrality dissipated both
features of this phenotype. Notably, muscle D does
not seem to play a significant metabolic role given that
mice with skeletal muscle-specific Dio inactivation
(Skm-DKO) exhibited no metabolic phenotype ().
The interpretation of these findings must also take into
consideration the fact that there is BAT mixed with
muscle fibers (), suggesting that some of the local
D-mediated TH signaling and consequent metabolic
effects are mediated at the BAT level and not SKM
fiber.

Dio2 polymorphism and metabolism. Re-
duced catalytic activity of ThrAla-D could
potentially dampen TH signaling in metabolically
relevant tissues that expressDIO (, ), similar to
what was observed in the brain of mice carrying the
ThrAla-Dio polymorphism (). Indeed, the first
description of the ThrAla-DIO polymorphism
was described in patients at higher risk of exhibiting
insulin resistance () and type  diabetes mellitus
(). Furthermore, individuals with compounded
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ThrAla-DIO and TrpArg b-adrenergic receptor
polymorphism, a receptor variant that generates less
cAMP (), exhibit higher body mass index ();
this suggests an interaction between these variants.
Of note, the current literature about the ThrAla-
DIO polymorphism is controversial, with poor re-
producibility among different studies (, –).
It is likely that additional unidentified linkage factors
such as ethnic background play a significant role in the
physiological and clinical relevance of the ThrAla-
DIO polymorphism (, , ).

Susceptibility to hepatic steatosis is defined by a
perinatal surge in hepatic Dio2
TRb predominates in the adult liver, where TH sig-
naling is mostly a reflection of circulating levels of T.
Liver has high D activity, but D-generated T
equilibrates rapidly with plasma, not contributing
significantly to local TH signaling (). TH signaling
is a potent stimulus for lipogenesis, which is in
agreement with the coupling between food intake and
thyroid activity. Many of the key lipogenic enzymes
and transcriptional factors are induced by T in the
liver and adipose tissue. Whereas D-generated T is
key to ensuring high lipogenic rates in cold-stimulated
BAT (), circulating T is thought to be the key
factor defining TH signaling in liver and white adipose
tissue, as in the adult mouse Dio is not expressed in
these tissues ().

Notwithstanding, the global-DKOmouse exhibits
intense steatosis when placed on an HFD (, ,
). Additionally, Dio is ectopically expressed in the
liver of mice with targeted deletion of both liver X
receptor (LXR) a and b (), suggesting that LXR
and RXR signaling inhibit Dio expression. Indeed,
(R)-OH-cholesterol negatively regulates human
DIO in a dose-dependent manner through a specific
region, 2 to 2 bp, within its promoter ().
Remarkably, the adipokine AFABP induces expression
of Dio in BAT via inhibition of the nuclear receptor
LXRa, thereby increasing local TH signaling. AFABP
accelerates thermogenesis by activating D-mediated
T production in brown adipocytes. The thermogenic
responses to T are abrogated in Afabp-KO mice but
enhanced by AFABP ().

These observations prompted follow-up studies that
revealed, at around the first day of life, a transient surge
in hepatocyte Dio expression activates T to T and
local TH signaling. This T surge doubles local T
concentration and modifies the expression of ~
genes involved in broad aspects of hepatocyte function,
including lipid metabolism (, ) (Fig. ). The role
of Dio expression was further investigated through the
creation of a mouse with liver-specific Dio inactivation
(Alb-DKO). These animals exhibit delay in neonatal
liver expression of key lipid-related genes and a per-
sistent reduction in PPARg expression. Notably, the
absence of a neonatal Dio peak significantly modifies

the baseline and long-term hepatic transcriptional re-
sponse to an HFD. In control animals, feeding an HFD
changes the expression of ~ genes involved in
synthesis of fatty acids and triglycerides, whereas in Alb-
DKO animals, the response to an HFD is restricted
to a different set of only ~ genes associated with
reverse cholesterol transport and lipase activity ().
A whole-genome methylation profile coupled to
multiple analytical platforms indicates that % to
% of these differences can be related to the pres-
ence of differentially methylated local regions mapped
to sites of active/suppressed chromatin, thus qualifying
as epigenetic modifications occurring as a result of
neonatal Dio inactivation. The resulting phenotype
of the adult Alb-DKO mouse is dramatic, with
greatly reduced susceptibility to diet-induced steatosis,
hypertriglyceridemia, and obesity ().

One of the genes that underlies the Alb-DKO
phenotype is zinc finger protein- (Zfp) (,
). Zfp is a Foxo-inducible transcriptional re-
pressor that causes lipid accumulation in the alpha
mouse liver  cell line (AML) and liver steatosis in
mice by reducing liver secretion of triglycerides and
hepatocyte efflux of cholesterol (). Zfp acts by
repressing  genes involved in lipoprotein structure
and lipid binding, as well as transport. The apolipo-
protein E (APOE) promoter contains a functional
Zfp-binding element that is also present in 
other lipid-related genes repressed by Zfp. Whereas
liver-specific knockdown of Zfp causes an “Alb-
DKO–like” metabolic phenotype, liver-specific nor-
malization of Zfp expression in Alb-DKO mice
rescues the phenotype, restoring normal susceptibility
to diet-induced obesity, liver steatosis, and hyper-
cholesterolemia (). Overall, these studies indicate
that the neonatal liver is particularly sensitive to TH
signaling. The transient peak of D-generated T on
the first day of life that doubles the local T con-
centration mediates a series of epigenetic events (),
including expression of the transcriptional repressor
Zfp, that defines the future ability of the liver to
secrete very LDL (VLDL) (). These mechanisms are
aligned with the overall positive effect of TH on liver
lipogenesis and carry significant implications for fu-
ture development of obesity and liver steatosis.

Dio3 expression in pancreatic b-cells dampens
TH signaling
TH is transported into pancreatic islets via MCT
() and OATPC, with T playing a metabolic role
in these cells (). Islet cells express both TRa and
TRb, with a relative higher level of TRa found in
murine pancreas a-cells (); however, glucagon
secretion does not seem to be regulated by TH sig-
naling. Exposure of zebrafish during the larval to
juvenile transition to exogenous TH precociously
activates the b-cell differentiation genes paired box b
(Paxb) and motor neuron and pancreas homeobox 
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(Mnx) while downregulating aristaless related ho-
meobox a (Arxa), a master regulator of a-cell de-
velopment and function (). In vivo studies in
neonatal rats indicate that TH accelerates metabolic
development of b-cells by inducing expression of a
transcription factor, v-maf avian musculoaponeurotic
fibrosarcoma oncogene homolog a (Mafa), via TRb.
Additionally, THs also accelerate b-cell senescence
through a TRa-dependent mechanism (). In-
terspecies variability in the effects of TH signaling on
b-cell maturation might exist vis-à-vis the observation
that hypothyroidism in utero stimulates pancreatic
b-cell proliferation and hyperinsulinemia in the ovine
fetus during late gestation ().

Studies involving isolated mature murine pan-
creatic islets indicate that TH inhibits insulin secretion
(, ). Furthermore, T suppresses glucagon-like
peptide  (GLP)–stimulated insulin secretion in
MIN cells (), which are derived from a mouse
insulinoma cell line. However, the presence of Dio
mRNA and D protein in embryonic and adult human
and murine pancreatic b-cells minimizes the in-
hibitory effects of T (, ). In MIN cells, Dio
expression is stimulated by GLP, an effect mediated
via the cAMP–protein kinase A pathway. Exendin-, a
GLP receptor agonist, also stimulatesDio expression
in MIN cells. Accordingly, mice with Dio in-
activation in pancreatic islets are glucose intolerant
due to in vitro and in vivo impaired glucose-stimulated
insulin secretion, without changes in peripheral sen-
sitivity to insulin (, ). In these animals, neonatal
(postnatal day ) and adult pancreas exhibited reduced
total islet area due to reduced b-cell mass, insulin
content, and impaired expression of key b-cells genes.
It is conceivable that Dio expression in perinatal
pancreatic b-cells prevents untimely exposure to TH,
the absence of which leads to impaired b-cell function,
insulin secretion, and disruption of glucose homeo-
stasis (). Studies in adult heterozygous mice with
Dio inactivation indicate that Dio is preferentially
expressed from the maternal allele in pancreatic islets
and that inactivation of this allele is sufficient to disrupt
glucose homeostasis by reducing pancreatic islet area,
insulin gene expression, and glucose-stimulated insulin
secretion ().

Heart
TRa is present in the myocardium and in the pe-
ripheral ventricular conduction system, whereas the
TRb isoform can be found in cells that form the
peripheral ventricular conduction system. In the atria
and in the proximal conduction system (sinoatrial node,
atrioventricular node), TRa and TRb isoforms are
coexpressed (). TH acts in the myocardium, trig-
gering chronotropic and inotropic effects. TH signaling
not only affects electrical transmission and rhythmicity
but also myocardial energy metabolism, changing the
types of energy substrates and the rate at which they are

used. An important component of TH effects in the
heart is mediated indirectly via acceleration of the rate
of oxygen consumption throughout the body. By in-
creasing global demand for oxygen, TH causes vaso-
dilation that requires an increase in cardiac output to
sustain mean arterial blood pressure.

The finding of DIO mRNA in the healthy human
(but not rodent) myocardium along with the identi-
fication of DIO mRNA in human cardiomyocytes
that were differentiated from human induced plu-
ripotent stem cells () and in the myocardium of
patients with various cardiac diseases suggest the
existence of local mechanisms that control TH sig-
naling (, ). These observations sparked general
interest, given that the commonly prescribed antiar-
rhythmic AMIO and its active metabolite, N-DEA,
inhibit D activity (). In fact, it has been proposed
that inhibition of myocardial D and consequent
reduction in local TH signaling contributes to the
antiarrhythmic efficacy of AMIO (). Given the
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Figure 10. Perinatal Dio2 liver expression defines future susceptibility to obesity and liver steatosis.
A brief surge in Dio2 expression in the liver around the first day of life affects the methylation status
[differentially methylated region (DMR)] of hundreds of genes, including Foxo1. The neonatal surge
in TH signaling prevents methylation of three sites within the Foxo1 promoter, allowing the gene to
be expressed and stimulate Zfp125, a liver transcription factor that suppresses the expression of 18
genes involved in the assembly and secretion of VLDL particles. As a result, normal mice develop
steatosis when placed on an HFD. In contrast, mice in which liver Dio2 was inactivated exhibit three
DMRs in the Foxo1 gene, reducing its expression to about half of that in control mice. Consequently,
the expression of the Foxo1 downstream target Zfp125 is also greatly reduced in the absence of the
perinatal surge in Dio2. The reduction in Zfp125 expression accelerates VLDL secretion, minimizing
lipid deposition and steatosis when animals are fed with an HFD (72, 408).
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similarities between these molecules with T, AMIO
is also thought to reduce cardiac TH signaling by
inhibiting TH transport across the plasma mem-
brane (), and/or direct binding to TRa and TRb
(, ), and even TR-dependent gene tran-
scription ().

The role played by D-generated T in the
myocardium was investigated in transgenic mice that
express DIO in the myocardium under the a-myosin
heavy chain (MHC) promoter (). This mouse has
normal thyroid function but exhibits a discrete in-
crease in myocardial T content and a gene expression
profile compatible with increased TH signaling, that is,
increased mRNA levels of hyperpolarization-activated
cyclic nucleotide–gated potassium and sodium channel
 (HCN; an ion channel that is key to the cardiac
pacemaker) and decreased bMHCmRNA levels ().
In perfused ex vivo studies, the aMHC-D heart had
an ~% higher heart rate and decreased levels of
phosphocreatine and adenosine diphosphate, in-
dicating accelerated metabolic rates. This is supported
by results of in vivo studies in which glucose uptake is
increased by ~.-fold in the aMHC-D heart ().
The increase in TH signaling is associated with an
enhanced capacity of the aMHC-D heart to generate
cAMP in response to catecholamine stimulation ().
The effects of increased cardiac-specific TH signaling
were studied in a second aMHC-D mouse model
conditionally expressing DIO in the myocardium
(). Myocardium DIO was found to be protective
against adverse myocardial remodeling caused by pres-
sure overload () or doxorubicin-induced chemical
injury (). D-generated T provided a host of me-
chanical improvements to the heart such as increased
fractional shortening, velocity of circumferential fiber
shortening, peak aortic outflow velocity, and aortic ve-
locity acceleration (). It is thus conceivable that the
increase in Dio mRNA observed in some murine
models of cardiac remodeling is an attempt to increase
cardiac performance. For example, a knock-in mouse
model of inherited dilated cardiomyopathy with a
deletion mutation (DK) in the cardiac troponin T
gene exhibits an increase in myocardial Dio mRNA
and D activity, likely as a result of generalized
activation in cAMP-dependent pathways ().
Similarly, postmyocardial infarction mice develop
markedly enlarged hearts with left ventricle systolic
dysfunction and upregulation of Dio mRNA ex-
pression in the heart ().

Taken together, these studies support the as-
sumption that myocardial TH signaling might en-
hance cardiac performance in some settings. For
example, in pediatric patients undergoing cardiac
surgery with cardiopulmonary bypass, the use of L-T
infusion in the postoperative period decreased the
requirement for inotropic support, increased spon-
taneous conversion to normal sinus rhythm, and
improved clinical outcomes (). In adult high-risk

patients undergoing coronary artery bypass grafting,
randomized postoperative administration of L-T was
associated with a higher mean cardiac index and lower
systemic vascular resistance, but it did not change
outcomes or alter the need for standard postoperative
therapy (). Additionally, in patients with depressed
left ventricle function undergoing coronary artery
bypass grafting, perioperative administration of L-T
resulted in a lower incidence of atrial fibrillation, fewer
required instances of cardioversion or anticoagulation
during hospitalization, and decreased required anti-
arrhythmic therapy at discharge (). Beneficial ef-
fects of short-term L-T replacement therapy, such as
improved ventricular performance, were also observed
in stable patients with ischemic or nonischemic dilated
cardiomyopathy ().

Myocardial injury dampens local TH signaling
In most models of ischemic heart disease with myo-
cardial injury, there is ectopic cardiac expression of
Dio, which inactivates TH and dampens local TH
signaling (, , ). It remains controversial as to
whether this is an adaptive response in view of the
positive effects of T on the myocardium (see above).
Dampening of TH signaling reverses the myocardial
gene expression profile to that observed during em-
bryonic development and might enhance the re-
generation potential as seen in a mouse expressing a
dominant-negative TRa (). Dampening of TR
signaling occurs through reactivation of Dio ()
and increased expression of TRa (), thereby
shifting the balance toward unoccupied TRs. In fact,
Dio is expressed in human cardiomyocytes differ-
entiated from human induced pluripotent stem cells.
Exposure of these cells to iopanoic acid, a competitive
inhibitor of deiodinases, changes the expression of
downstream targets of T, that is, aMHC and bMHC,
ATPase sarcoplasmic/ER Ca1 (SERCA), and phos-
pholamban (PLB) mRNA levels, confirming damp-
ening of TH signaling ().

Dio expression has also been observed in animal
models of adverse remodeling such as myocardial
infarction () and chronic pulmonary hypertension
with right ventricular hypertrophy and ventricular
failure (treatment with monocrotaline) (, ).
Subsequent studies identified induction of cardiac
Dio and dampening of TH signaling in car-
diomyocytes obtained from a transgenic model of
progressive dilated cardiomyopathy (). Studies in
the postmyocardial infarction heart suggested that
miRNAs (miRs) might play a role as well. These are
noncoding RNA molecules that bind to comple-
mentary sequences of target mRNAs and function as
RNA silencers and posttranscriptional regulators of
gene expression, interfering with translation or causing
target degradation. In the postmyocardial infarction,
miR- is the miRNA with the highest potential to
target Dio mRNA (). In this setting, miR- and
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D protein are coexpressed in cardiomyocytes, but
Dio mRNA expression precedes miR- expression.
This suggests that a D-mediated decrease in TH
signaling induces cardiacmiR- expression, which in
turn suppresses both mRNA and protein D ex-
pression. These results support the existence of a
negative feedback mechanism regulating Dio ex-
pression in the heart during myocardial injury ().

Taken together, these studies served as the basis
for a clinical trial that enrolled patients undergoing
elective open heart surgery to assess TH deiodination
in the human heart (). Myocardial TH metabolism
was assessed by analyzing the difference in serum TH
levels between the aortic root (incoming blood) and
the coronary sinus (outgoing blood) of patients un-
dergoing cardiac surgery. Immediately before car-
diopulmonary bypass, blood flowing through the
myocardium of patients with aortic stenosis (with left
ventricular hypertrophy) exhibited ~% reduction in
T and ~% increase in rT levels, a decrease in the T/
rT ratio of ~%. In contrast, no myocardial TH
metabolism was observed in patients with coronary
artery disease (no ventricular hypertrophy). The
accelerated TH inactivation in the myocardium of
patients with aortic stenosis is likely the result of DIO
expression. Notably, there was no evidence to suggest
TH activation in the myocardium in this study ().

Whereas the injured myocardium could benefit
from dampening of TH signaling, activation of TH
signaling in other tissues of the heart seems to improve
outcomes for myocardial injury. For example, acti-
vation of TH signaling in endothelial cells by selective
expression of TRa in a transgenic mouse model
increased coronary blood flow by %, coronary con-
ductance by %, and coronary reserve by % ().
Notably, systemic blood pressure decreased by % in
these transgenic mice after TRa expression, with no
effects on heart rate. Furthermore, these animals
exhibited much improved performance in response to
myocardial ischemia followed by reperfusion, and re-
duced infarct size by %. It is thus conceivable that
selective activation of TRa in endothelial cells protects
the heart against injury after an ischemic insult and does
not result in adverse cardiac or systemic effects ().

Lung
Normal human lung exhibits both D and D activity
(), hinting that deiodinases control how local TH
signaling affects fetal lung development and function.
In fact, it is well known that TH signaling and steroids
affect the maturation of pneumocytes. Prenatal ad-
ministration of glucocorticoids is commonly used to
accelerate lung maturation and attenuate the severity
of respiratory distress syndrome (RDS). Knock-in
mutations of the nuclear corepressor SMRT in mice
(SMRT mRID), which specifically disrupt the in-
teraction between SMRT and TRs, produces RDS
caused by prematurity of the alveolar type I epithelial

cells (). Remarkably, administration of anti-TH
drugs rescues SMRT-induced RDS, indicating that an
untimely increase in TH signaling is detrimental for
lung development. Subsequent studies indicate that TR
affects alveolar type I epithelial cell differentiation
through Krüppel-like factor , a transcription factor that
activates specific gene programs in these cells ().

Dio2 activation plays a role in pulmonary response
to injury
In addition to normal lung development and physi-
ology, local TH signaling also plays a role in how
the lung responds to injury. In mouse models of
acute lung injury (lipopolysaccharide- and ventilator-
induced lung injury), there is induction of both Dio
mRNA and D protein in lung, with expression di-
rectly increasing with the extent of lung injury. Mice
with Dio knockdown exhibit increased lung injury,
suggesting a protective role for Dio in acute lung
injury (). In subsequent studies of ventilator-
induced lung injury (VILI), global-DKO mice ex-
hibit greater susceptibility to VILI when compared
with control mice, with poorer alveoli integrity and
greater induction of lung chemokine and cytokine
gene expression (). Systemically hypothyroid mice
exhibited a similar response to VILI, suggesting that
the global-DKO lungs were functionally hypothy-
roid. Treatment of global-DKO mice with T res-
cued many of the lung chemokine and cytokine
profiles in response to VILI, suggesting that admin-
istration of T could be beneficial for the treatment of
lung injury ().

Indeed, this was tested in a mouse model of
pulmonary fibrosis, a condition in which the normal
lung tissue is replaced as a result of active remodeling;
there is deposition of extracellular matrix and dramatic
changes in the phenotype of both fibroblasts and al-
veolar type II epithelial cells (, ). Idiopathic
pulmonary fibrosis (IPF) affects ~, patients in
the United States (, ). IPF is the result of
multiple cycles of epithelial cell injury and activation
that provoke the migration, proliferation, and acti-
vation of mesenchymal cells with the formation of
fibroblastic/myofibroblastic foci, accumulation of ex-
tracellular matrix, and abnormal wound repair (,
). A search in a database of IPF lungs for abnormal
expression of genes involved in lung bioenergetics
revealed DIO among the top  significantly in-
creased genes (). DIO expression was eightfold
higher in lungs of patients with IPF compared with
controls. Subsequent studies indicated that disruption
of TH signaling via Dio inactivation or systemic
hypothyroidism enhanced bleomycin-induced fibrosis
whereas local or systemic supplementation with TH
after bleomycin administration blunted fibrosis.
Aerosolized TH delivery increased survival and re-
solved fibrosis in two models of pulmonary fibrosis
in mice (). Sobetirome, a TRb-selective agonist,
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also blunted bleomycin-induced lung fibrosis. After
bleomycin-induced injury, TH promoted mitochon-
drial biogenesis, improved mitochondrial bioenergetics,
and attenuated mitochondria-regulated apoptosis in
alveolar epithelial cells both in vivo and in vitro. TH did
not blunt fibrosis in PGCa- or PTEN-induced pu-
tative kinase  KO mice, suggesting dependence on
these pathways (). It is conceivable that the anti-
fibrotic properties of TH are associated with protection
of alveolar epithelial cells and restoration of mito-
chondrial function and that TH may thus represent a
potential therapy for pulmonary fibrosis ().

Musculoskeletal system

Skeletal muscle
SKM is a target of TH signaling, with T affecting
differentiation, development, regeneration, and metab-
olism (–). TH gains access to skeletal myo-
cytes predominantly via MCT/OATPC and signal
through TRa (). DIO is expressed in human and
murine SKM (, , –), with higher levels in
slow-twitch compared with fast-twitch muscle ().
However, an issue remains, which is low D activity
level observed in the tissue, at least two orders of
magnitude lower than brain (–). Is this low
baseline D activity sufficient to affect local TH
signaling?

Although the role of SKM Dio in TH signaling
remains controversial, in some settings the global-DKO
mouse does exhibit signs of reduced TH signaling in
SKM (). In this regard, deiodinases have been studied
in the context of SKM development (, ). Cell
culture studies indicate that D activity is increased
during maturation of mouse myoblasts (). Indeed,
there is a temporal association between induction of
Dio and expression of developmental genes in primary
muscle precursor pp cells (). If these cells are ob-
tained from global-DKO animals, they remain in the
proliferating phase and do not differentiate into myo-
tubes, a phenotype that is rescued by addition of T ().
Notably, during this process, the Dio expression pattern
is reciprocal to that of Dio, a mechanism that is con-
trolled by the histone H demethylating enzyme (LSD-)
that induces Dio and represses Dio () (Fig. ).

Other studies on the role of Dio in defining TH
signaling in SKM used animals in which SKM Dio
inactivation was limited to SKM (). Floxed-Dio
mice were crossed with mice expressing Cre-
recombinase under the myosin light chain f to dis-
rupt Dio expression in the late developmental stages
of skeletal myocytes (Skm-DKO). This led to an ~%
loss in D activity in neonatal and adult SKM and
~% loss in isolated Skm-DKO myocytes. However,
soleus (SOL) T content was not affected. The ex-
pression of several T-responsive genes in SKM was
also preserved in neonatal Skm-DKO hindlimb
muscles, at a time that coincides with a peak of D

activity in control animals. In adult SOL the baseline
level of D activity was about sixfold lower, and in the
Skm-DKO SOL, the expression of only one of five
T-responsive genes was reduced (). Despite these
results, adult Skm-DKO animals performed in-
distinguishably from controls on a treadmill test of
endurance and onmuscle strength (). These studies
indicate the existence of multiple sources of Dio
expression in mouse SKM, with limited roles in
postnatal SKM fibers.

The Dio role on SKM development was further
tested in mice with disruption of Dio driven by
two early developmental SKM promoters: myogenic
regulator factor- (Myf) and muscle determination
gene (MyoD) (). Myf myoblasts in culture dif-
ferentiate normally into myotubes, despite loss of
almost all D activity.DiomRNA levels in developing
SKM obtained from Myf-DKO embryos (E.)
were ~% of control littermates, but the expression of
the T-responsive genes myosin, heavy polypeptide
(Myh)  and , and ATPase sarcoplasmic/ER Ca1

transporting (Atpa)  and was not affected. InMyf-
DKO and Myod-DKO neonatal hindlimb muscle,
the expression of Myh and Myh and Atpa
remained unaffected, despite a % to % loss in D
activity and/or mRNA. Only inMyoD-DKO neonatal
muscle was there a % reduction in Atpa mRNA
(). Postnatal growth of both mouse models and
SKM function as assessed by exercise capacity and
measurement of muscle strength were normal. Fur-
thermore, an analysis of the adult SOL revealed no
changes in the expression of T-responsive genes,
except for an ~% increase in MyoD-DKO SOL
Myh mRNA.

The report of two mouse models of early de-
velopmental disruption of Dio in myocyte pre-
cursors with no significant SKM phenotype adds to
the controversy regarding the role of D during
SKM development and as a determinant of TH
signaling in adult SKM. However, there are studies
indicating that TH signaling can be enhanced in
SKM via induction of Dio expression by physical
activity () (Fig. ). An acute treadmill exercise
session ( minutes at % to % of maximal
aerobic capacity) increased Dio expression/activity
(.- to .-fold) as well as PGCamRNA levels (.-
to -fold) in rat SOL muscle and white gastrocne-
mius muscle and in mouse SOL muscle. However,
induction of PGCa was only partial (~% less) in
the Skm-DKO mice by acute treadmill exercise as
well as in primary Skm-DKO myocytes stimulated
with cAMP. Chronic exercise training ( weeks)
increased SOL muscle PGCa mRNA levels (~%)
and the mitochondrial enzyme citrate synthase
(~%). In contrast, PGCa expression did not
change and citrate synthase decreased by ~% in
Skm-DKO mice. SOL muscle PGCa response to
chronic exercise was also blunted in Myf-DKO
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mice (). These studies indicate that Dio ex-
pression mediates part of PGCa induction by
treadmill exercise and its downstream effects on
mitochondrial function.

Skeleton
TH plays a key role on postnatal bone develop-
ment and metabolism, as undiagnosed congenital TH
deficiency can lead to delayed growth, and hyper-
thyroidism in adults can lead to osteoporosis ().
TH signaling in bone cells occurs predominantly
via MCT and TRa; other TH transporters such as
LATs and MCT are also expressed. TH induces
endochondral ossification and linear bone growth by
acting directly in reserve and proliferating TR-
expressing chondrocytes to induce differentiation. In
turn, hypertrophic chondrocytes do not express TRs
(, ). T acts in osteoblastic cells via TRa to
induce differentiation and increase bone formation.
Bone resorption is also accelerated by T via induction
of osteoclastic activity; however, this is an indirect
effect via osteoblasts that is likely to involve ex-
pression of osteoblastic–osteoclastic coupling factors
(, ). Studies in Mct-KO animals indicate that
postnatal endochondral ossification and linear
growth are delayed. Furthermore, bone mass and
mineralization are decreased in adult Mct-KO mice
(), a phenotype that is consistent with decreased
TH signaling in growth plate chondrocytes and in-
creased TH signaling in adult bone. It is conceivable
that in addition to the essential physiological re-
quirement for MCT in chondrocytes, other TH

transporters in other skeletal cells play a role in adult
bone maintenance ().

Fetuses harvested from pregnant hypothyroid mice
exhibited marked reduction in tissue concentration of
both T and T, but bone development, as assessed at
the distal epiphyseal growth plate of the femur and
vertebra, is largely preserved up to E. (). Only at
E. do hypothyroid fetuses exhibit a reduction in
femoral type I and type X collagen and osteocalcin
mRNA levels, in the length and area of the pro-
liferative and hypertrophic zones, in the number of
chondrocytes per proliferative column, and in the
number of hypertrophic chondrocytes, in addition to a
slight delay in endochondral and intramembranous
ossification. This suggests that up to E., TH sig-
naling in bone is kept to a minimum. In fact, Dio
mRNA, which in mice is present in growth plate
chondrocytes, osteoblasts, and osteoclasts (), is
readily detected as early as E. and its expression
decreases markedly (~-fold) at E., and even more
at  days after birth (). In contrast, Dio mRNA
expression increases significantly by E. and
markedly (~.-fold) by postnatal day . DiomRNA
was detected in growth plate chondrocytes, in oste-
oblasts and osteoclasts, but D activity was only de-
tected in osteoblasts (, ). Reciprocal expression
patterns of Dio and Dio during early bone devel-
opment along with the absence of a “hypothyroid-like”
bone phenotype at this time suggest that coordinated
reciprocal deiodinase expression keeps TH signaling in
bone to very low levels up until E. (). Indeed,
activation of TH signaling accelerates differentiation of

Figure 11. Physical exercise enhances TH signaling in skeletal muscle via induction of Dio2. One of the downstream targets of T3 is the
thermogenic coactivator PGC1a that is key to mitochondrial function. Physical exercise accelerates cAMP production within skeletal
myocytes, which induce the expression of both Dio2 and PGC1a. Dio2 expression accelerates local activation of T4 to T3, which
enhances TH signaling and further stimulates PGC1a expression. This TH-mediated mechanism for induction of PGC1a is a component
of the mitochondrial adaptation induced by exercise, which is lost in animals with skeletal muscle–specific Dio2 inactivation (130).
[Adapted with permission from “Physical exercise activates thyroid hormone in skeletal muscle.” www.BiancoLab.org.]
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chondrogenic cells and cultured mouse tibias, but T is
as potent as T, which indicates that T is converted
locally to T (). Dio mRNA is present in neonatal
mouse tibias (), and D activity can be detected in
bone extracts at multiple sites of the mouse skeleton,
bone marrow, and in osteoblastic cell line ().
Treatment with vitamin D [,(OH)VD] induces
D activity by twofold to threefold, but estradiol,
parathyroid hormone, forskolin, leptin, TNFa, TGFb,
and dexamethasone do not affect D ().

Dio continues to play an important physiological
role in TH signaling in adult animals. Studies in global-
DKO mice revealed bones that have reduced
toughness and are brittle, displaying increased sus-
ceptibility to fracture (). This phenotype is char-
acterized by a % reduction in bone formation and a
generalized increase in skeletal mineralization result-
ing from local deficiency of T in osteoblasts. Articular
cartilage is preserved in adult global-DKO mice, but
they exhibit increased subchondral bone mineral
content (). Therefore, osteoblast Dio expression
plays an essential role in the optimization of bone
strength and mineralization ().

Reproductive organs

Gonads
Ovaries express multiple elements of the signaling
TRIAD but little is known about dynamic control of
TH signaling in this organ (). TRa predominates
and Lats and Mct are the most abundant transporters
in the mouse ovary (, ). Expression of Dio and
Dio have also been detected at different neonatal
ages, with Dio mRNA levels predominating over
Dio (). Indeed, evidence exists that ovarian ste-
roidogenesis is affected by TH signaling. Ovarian
granulosa cells obtained from infertile women exhibit
a reduction in biological markers of fertility, which is
associated with reduced expression of TRs ().
However, it is unclear whether this relationship in-
volves modifications in TH signaling. A clearer but
incomplete picture exists for the testis. The rat and
human testes express TRa during development and
adulthood (mostly in the Sertoli cells) and thus are a
potential target of TH (). Both MCT and OATP
types of transporters are present in the testis (, ).
OATPC has been identified in the Leydig cells ()
whereas MCT is also expressed in the Sertoli cells.
DIO and DIO are also expressed in the testis,
suggesting that local control of TH signaling plays a
role. In rodents, D activity is located in germ cells at
late stages of differentiation (). The highest D
activity level coincides with the peak of TH in the
circulation at ~ weeks of age (), a time that marks
the end of the high proliferation rate of Sertoli cells
and spermatogonia (). This suggests that DIO
may assist the rising circulating TH levels in enhancing
local TH signaling to trigger differentiation processes

in both cell types (). However, adult global-DKO
mice have no specific testicular phenotype, suggesting
the existence of redundant mechanisms (). At the
same time, Dio expression is high in the mouse
developing testis, peaking around the first  weeks of
life. Although global-DKO mice exhibit a dramatic
testicular phenotype, it is not clear how much of the
phenotype is due to deficient local D-mediated
regulation of TH signaling as opposed to systemic
neonatal thyrotoxicosis that is typical in these animals,
or to both ().

Uterus
In uterus, TRa is expressed in the uterine luminal
epithelium, endometrial gland epithelium, and en-
dometrial stromal cells and, moderately, with myo-
metrial smooth muscle. In oviduct, they were observed
moderately in the epithelium of the tube and the
smooth muscle cells of the muscular layer (). Dio
and Dio are expressed in the mouse and human
uterus, suggesting that local TH signaling and/or the
flow of TH to the fetus is regulated by these enzymes
(–). Dio expression is in the murine endo-
metrial stromal cells, particularly in the region adjacent
to the epithelial cells of the uterine lumen (). D
can also be found in the endometrial glands of
nonpregnant human uteri, and endometrial activity
approximated that of term placenta (). Once the
embryo implants into the receptive mouse uterus,
Dio expression and D activity are induced in the
stromal cells via progesterone and cAMP, leading to a
drop in uterine T levels and TH signaling ().
Notably, addition of T or Dio knockdown com-
promises decidualization ().

Placenta
Rat placenta expresses significant levels of TRa and
TRb transcripts and proteins (). In human term
placenta the use of laser capture microdissection
revealed that trophoblasts express substantially less
mRNA encoding TRa and TRb than do stromal cells
(). Human term placenta expresses different TH
transporters, including MCT, MCT, LAT, LAT,
OATPA, and OATPA. These transporters are
often present in the apical (maternal-facing) micro-
villous membrane of syncytiotrophoblasts (STBs).
Studies using Mct, Mct, and Lat KOmice indicate
that none of these transporters, independently, is es-
sential for fetal development, albeit the study of Lat is
inconclusive, as its inactivation is embryonic lethal
().

Human placenta expresses DIO and DIO
during the entire gestational period, which may
affect TH signaling in the fetus () (Fig. ). Before
 weeks’ gestation, the fetus relies on transplacental
delivery of maternal TH. Maternofetal TH transfer is
regulated by trophoblast cell membrane trans-
porters, which mediate influx and efflux of THs, as
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well as placental D and D that control intra-
placental TH levels. DIO is expressed mainly in
mixed fetal membranes, but also in trophoblasts
(). D activity declines during pregnancy, to
hardly detectable levels at term. Notably, D activity
is ~-fold lower than D activity at all gestational
ages, suggesting that placental D plays no signifi-
cant role in fetal TH levels, but it may play a role in
local TH signaling, inducing differentiation of tro-
phoblasts (–).

In humans, high DIO expression is present in
the placental STBs and cytotrophoblasts, endothe-
lium of fetal vessels, and maternal decidua. D is also
present at other sites of maternal–fetal interface,
including the umbilical arteries and vein and the
fetal respiratory, digestive, and urinary tract epi-
thelium (). This is likely to account for the low
fetal serum T and high serum rT levels. Placental
D-specific activity also decreases during gestation
and is likely to function as a barrier for maternal TH
to reach the fetus, possibly contributing to low T
and high rT serum concentrations observed in the
fetus (). The disappearance of D at birth is likely
to explain many of the changes in neonatal TH
economy occurring early in the postnatal life (). It
is uncertain exactly which cells in the placenta
constitute a barrier for maternal–fetal TH transfer in
the different stages of gestation, but it is clear that
STBs play a role in this process. Given all the D
activity, it is unexpected that some T molecules
undergo transcellular transport across STBs with-
out being inactivated. This suggests an alternative
mechanism for T transport, namely complexed
with transthyretin (TTR) that is produced by STBs
().

Tumors and kinase inhibitors
TH signaling affects the progression of certain tumors
to the point that it can halt growth of basal cell
carcinomas (BCCs) (). DIO is the element in the
signaling TRIAD that plays the most relevant role, but
other deiodinases, TRs, and TH transporters have been
studied in this context as well.

Deiodinases
DIO is predominantly expressed during embryonic
development, coordinated with DIO expression to
fine-tune TH signaling in different tissues (, ). As
an oncofetal protein, D is only minimally expressed
in most adult tissues (except for brain and placenta),
with much higher expression levels seen in many
malignant tumors (, ). In this regard, TGFb and
the Hedgehog family of proteins are known to
stimulate DIO expression and dampen TH signaling
(, , ). TGFb transcriptionally induces DIO
expression in human cells, including SKM myoblasts,
fibroblasts, fetal epithelium, endometrium, and tumors
such as hemangioma and glioma (). Hedgehog

proteins also transcriptionally induce DIO, but they
also dampen TH signaling through coordinated in-
hibition of D activity (, , ) and by inducing
expression of SMRT through Gli, the effector of the
Hedgehog pathway (). The effects of the Hedgehog
family of proteins are illustrated in the chicken de-
veloping growth plate, where Indian Hedgehog sig-
naling inhibits D-mediated T production by
inducing the ubiquitin ligase WSB (, ) and at the
same time stimulates Dio expression, further damp-
ening TH signaling.

In the skin setting, the Shh pathway is constitu-
tively active in BCCs, creating an example of how TH
signaling is fine-tuned by the coordinated expression
of deiodinases. Shh, signaling through Gli, induces
DIO in proliferating keratinocytes, in mouse and
human BCCs. Gli-induced DIO dampens TH sig-
naling, thus increasing cyclin D and keratinocyte
proliferation (, ). DIO knockdown reduces
growth of BCC xenografts in nude mice by about
fivefold. This crosstalk between Shh/Gli and TH
explains how Shh induces keratinocyte proliferation
(). Notably, BCC cells express not only DIO but
also substantial levels of DIO. In these cells, DIO
inactivation accelerates cell cycle progression, thereby
enhancing the proportion of S-phase cells and cyclin
D expression. Furthermore, the basal apoptotic rate is
oppositely regulated in D- and D-depleted cells. The
dual regulation of D and D expression plays a
critical role in cell cycle progression and cell death by
influencing cyclin D–mediated entry into the G–S
phase, and may constitute a potential therapeutic
approach to BCC (, ).

High levels of DIO expression have been re-
ported in a number of tumors, including gliomas,
gliosarcomas, glioblastomas, TSH/adrenocorticotropic
hormone–producing tumors, papillary thyroid carci-
noma, as well as tumor-derived cell lines of breast
cancer (MCF cells), colon adenocarcinoma (Caco,
SW, and HCT cells), endometrial cancer (ECC-
 cells), and neuroblastoma (SH-SYY cells), as a result
of activation of ERK and p pathways (, ,
–). DIO lies downstream of the Wnt/b-catenin
pathway and contributes to colon carcinoma cell
growth () and tumorigenic capacity in stem cells
via T-induced bone morphogenetic protein  gene,
which exhibits high antitumor activity in colorectal
cancer (). DIO expression in vascular tumors such
as hepatic hemangiomas is most striking. Hemangi-
omas are common tumors of infancy that express
variable levels of DIO. Depending on the size of the
tumor, D levels can be so high that the tumor in-
activates circulating TH faster than the thyroid gland
can secrete, resulting in what it is known as con-
sumptive hypothyroidism ().

In recent studies, a similar condition has been
observed in patients with metastatic renal cell carci-
noma or gastrointestinal stromal tumors receiving
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treatment with the tyrosine kinase inhibitor sunitinib
(, ). Hepatic D activity increases markedly in
rats undergoing similar treatment with this kinase
inhibitor, indicating that DIO induction plays a
role in sunitinib-induced hypothyroidism ().
Similar to hemangiomas, gastrointestinal stromal tu-
mors themselves can produce consumptive hypo-
thyroidism caused by marked overexpression of DIO
within the tumor (, ). Some kinase inhibitors
might have a broader effect on TH signaling by af-
fecting other components of the TRIAD. For example,
in a study of  consecutive patients with hepato-
cellular carcinoma who were treated with sorafenib, 
patients developed thyroiditis and  had elevation of
TSH or FT above the normal range; simultaneously,
the serum T/rT ratio decreased (). In cellular
studies, sorafenib decreased T uptake via MCT and
to a lesser extent via MCT ().

Conversely, some tumors overexpress DIO and
DIO, with systemic consequences for thyroid econ-
omy. There are reports of patients with large or widely
metastatic follicular thyroid carcinoma who had a
persistently increased ratio of serum T/T and
exhibited increased D activity in their tumors (,
). In turn, DIO expression can be reduced in
several types of human malignancies such as papillary
thyroid carcinoma, clear cell renal cell carcinoma, lung
cancer, gastric cancer, hepatic adenoma, and some
pituitary tumors, whereas in breast cancer, follicular
thyroid carcinoma, and anaplastic thyroid cancer there
is an increase in D levels (, , –). Loss of
DIO expression is associated with proliferation and
migration of renal cancer cells, downregulating
oncoproteins and affecting key metabolic pathways
(, ). In this context, miRNAs seem to play an
alternative role as regulators of DIO expression ().
The use of bioinformatics analyses revealed that the
DIO 9 untranslated region is targeted by two
miRNAs, miR- and miR-, with the former
mediating loss of D in renal cancer and reducing the
intratumoral levels of T. This suggests that in renal
cancer cells, miR- dampens D-mediated TH
signaling (). Stable reexpression of DIO in these
cells downregulated  proteins consisting mainly of
oncoproteins (e.g., STAT, ANPEP, TGFBI, TGM)
that promote proliferation, migration, and invasion.
Furthermore, DIO reexpression enhanced expression
of LAT components and elevated intracellular con-
centration of T. Expression of DIO-affected genes
strongly correlated with DIO mRNA levels in bi-
opsies of renal cancer patients as well as with their
poor survival (). Overall, this is a unique situation
given that D is not known for affecting local TH
signaling in other systems.

TRs and transcriptional coregulators
Studies in a renal cell cancer (RCC)–derived cell line
indicate a possible disruption of TH signaling due to

decreased TR-interacting protein  (TRIP) levels, a
TR coactivator that is regulated by T (). Addi-
tionally, the expression of TRa and TRb are also
reduced in RCC tumor samples and correlated with
poor prognosis in pairs of RCC tumor-control samples
(). Whether this disruption in TH signaling plays a
role in tumor progression or it is just an associated
event remains to be determined. However, in other
tumor types a causal relationship has been established.
Studies in cultured cells in vitro and in xenograft
models in vivo indicate that TRb could function as a
tumor suppressor (, ). At the same time, NCoR
depletion enhances cancer cell invasion and increases
tumor growth and metastatic potential in nude mice
(). Expression of TRb increases NCoR levels, an
essential step to inhibit tumor growth and metastasis.
Indeed, NCoR is downregulated in human hep-
atocarcinomas and in the more aggressive breast
cancer tumors, and its expression correlates positively
with that of TRb (). The TRa pathway has also
been associated with tumorigenesis: increased ex-
pression of TRa has been reported in cohorts of
patients with colorectal tumors. In these cases, TRa
gene expression correlates directly with Wnt activity
(). In fact, ectopic expression of TRa in the in-
testine epithelium of mice accelerates tumorigenesis
and the development of more aggressive tumor
phenotypes (). In colon cancer cells, TRa levels
regulate Wnt activity to affect cell proliferation
and migration: increased expression of TRa was
accompanied by decreased levels of several cellular
inhibitors of Wnt signaling (). Such inverse cor-
relation found in mouse models was also demon-
strated in cohorts of patients with colorectal tumors.
This accounts for how the elevated TRa led to the
activation of Wnt signaling (), thereby establishing
the potential oncogenic role of TRa in the intestine
epithelium (). The contrasting functions of TR
isoforms in tumorigenesis are puzzling. A better un-
derstanding of how both TRa and TRb crosstalk with
other cellular networks of tumor promoters and
suppressors is necessary to characterize their role in
tumorigenesis ().

Tissue regeneration
The observations that TH signaling as modulated by
the deiodinases plays a role in tumor cell proliferation
sparked interest regarding a possible similar role in tissue
regeneration. In the SKM, tissue damage caused by
turpentine injection results in Dio expression, sug-
gesting that reduced TH signaling is important for the
initial steps of muscle regeneration (). In fact, satellite
cell–specific inactivation of Dio severely impairs SKM
regeneration due to massive satellite cell apoptosis ().
The proapoptotic program requires an intact FoxO/
MyoD axis, with both genes positively regulated by TH
signaling. Induction ofDio is followed by a several-fold
induction of Dio in the later stages of muscle

34 Bianco et al Dynamic Control of TH Signaling Endocrine Reviews, August 2019, 40(4):1–48

REVIEW



regeneration, enhancing TH signaling that possibly
plays a role in muscle differentiation (, , ).

Partial hepatectomy in rodents is another well-
known model of tissue regeneration. Dio mRNA and
D activity are several-fold increased hours after
partial hepatectomy (). This increase in D reduces
serum and liver T and T levels by twofold to
threefold, which coincides with a peak in hepatocyte
proliferation. This temporal profile also suggests that
in this model dampening TH signaling via induction
of Dio expression favors cellular proliferation. Similar
observations of reduced local TH signaling were made
in rats with cholestatic liver injury and fibrosis caused
by bile duct ligation (). In this model there is strong
induction of hepatic Dio expression in stromal cells,
whereas Dio expression, which is typical in hepato-
cytes, decreases to low levels.Dio expression occurs in
the injury-activated hepatic stellate cells, which play
important roles in hepatic wound healing and re-
generation. Notably, hepatic stellate cell activation and
Dio expression are controlled by Hedgehog signaling
(). The Hedgehog family of proteins also plays a
role in advanced liver fibrosis that might be present in
patients with nonalcoholic fatty liver disease (). In
these patients, the reduced FT/rT ratio confirms the
switch from DIO to DIO expression, reducing local
TH signaling as evidenced by lower mRNA levels of
T-responsive genes.

These studies indicate that the Hedgehog-dependent
changes in liver stromal cells drive repair-related changes

in hepatic deiodinase expression that dampens local TH
signaling and is likely to affect cellular differentiation
(). However, this could not be verified when a novel
mutant mouse with hepatocyte-specific Dio deficiency
was studied (). These animals exhibited normal local
responses to toxin-induced hepatonecrosis, including
normal levels of tissue necrosis and regeneration. No-
tably, these mice exhibited accelerated systemic recovery
from NTIS-induced hypothyroxinemia and low serum
T levels, confirming that peripheral reactivation ofDio
expression is an important factor in the pathogenesis of
NTIS ().

Conclusions

The tranquility of the plasma T levels contrasts with a
stormy intracellular environment of a large number of
tissues, in which T levels and TH signaling rapidly
increase or decreases whereas serum T concentration
remains unchanged. This is possible due to the sig-
naling TRIAD, namely the TH transporters, deiodi-
nases, and TRs, which modulate entry and metabolism
of TH molecules as well as transduction of TH sig-
naling. These mechanisms control how the biologic
activity of the thyroid secretion impacts tissues at
various life moments, during health and disease states.
Understanding these mechanisms should allow for the
development of customized approaches to manipulate
TH signaling, with enormous therapeutic implications.
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M, Pierre M, Courtin F. Induction of type 3 iodo-
thyronine deiodinase by nerve injury in the rat
peripheral nervous system. Endocrinology. 2001;
142(12):5190–5197.
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289. Carlé A, Faber J, Steffensen R, Laurberg P, Nygaard B.
Hypothyroid patients encoding combined MCT10
and DIO2 gene polymorphisms may prefer L-T3 1
L-T4 combination treatment—data using a blind,
randomized, clinical study. Eur Thyroid J. 2017;6(3):
143–151.

290. Bernal J. Thyroid hormone receptors in brain de-
velopment and function. Nat Clin Pract Endocrinol
Metab. 2007;3(3):249–259.

291. Gogakos AI, Duncan Bassett JH, Williams GR.
Thyroid and bone. Arch Biochem Biophys. 2010;
503(1):129–136.
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Courtin F. Hypoxia stabilizes type 2 deiodinase
activity in rat astrocytes. Endocrinology. 2007;
148(10):4745–4753.

332. Burmeister LA, Pachucki J, St Germain DL. Thyroid
hormones inhibit type 2 iodothyronine deiodinase
in the rat cerebral cortex by both pre- and post-
translational mechanisms. Endocrinology. 1997;
138(12):5231–5237.

333. Zou L, Burmeister LA, Styren SD, Kochanek PM,
DeKosky ST. Up-regulation of type 2 iodothyronine
deiodinase mRNA in reactive astrocytes following
traumatic brain injury in the rat. J Neurochem. 1998;
71(2):887–890.

334. Rastogi L, Godbole MM, Ray M, Rathore P, Rathore
P, Pradhan S, Gupta SK, Pandey CM. Reduction in
oxidative stress and cell death explains hypothyroidism
induced neuroprotection subsequent to ischemia/
reperfusion insult. Exp Neurol. 2006;200(2):290–300.

335. Rastogi L, Godbole MM, Sinha RA, Pradhan S.
Reverse triiodothyronine (rT3) attenuates ischemia-
reperfusion injury. Biochem Biophys Res Commun.
2018;506(3):597–603.

336. Liu YY, Brent GA. Thyroid hormone and the brain:
mechanisms of action in development and role in
protection and promotion of recovery after brain
injury. Pharmacol Ther. 2018;186:176–185.

337. Barres BA, Lazar MA, Raff MC. A novel role for
thyroid hormone, glucocorticoids and retinoic acid
in timing oligodendrocyte development. Develop-
ment. 1994;120(5):1097–1108.

338. Billon N, Jolicoeur C, Ying QL, Smith A, Raff M.
Normal timing of oligodendrocyte development
from genetically engineered, lineage-selectable
mouse ES cells. J Cell Sci. 2002;115(Pt 18):3657–3665.

339. Dugas JC, Ibrahim A, Barres BA. The T3-induced
gene KLF9 regulates oligodendrocyte differentiation
and myelin regeneration. Mol Cell Neurosci. 2012;
50(1):45–57.

340. Remaud S, Ortiz FC, Perret-Jeanneret M, Aigrot MS,
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Fekete C, Egri P, Gereben B, Li Y, Deng Y, Patti ME,
Zevenbergen C, Peeters RP, Mash DC, Bianco AC.
Prevalent polymorphism in thyroid hormone-
activating enzyme leaves a genetic fingerprint
that underlies associated clinical syndromes. J Clin
Endocrinol Metab. 2015;100(3):920–933.

343. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC,
Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham
GW, Grenier-Boley B, Russo G, Thorton-Wells TA,
Jones N, Smith AV, Chouraki V, Thomas C, Ikram
MA, Zelenika D, Vardarajan BN, Kamatani Y, Lin CF,
Gerrish A, Schmidt H, Kunkle B, Dunstan ML, Ruiz
A, Bihoreau MT, Choi SH, Reitz C, Pasquier F,
Cruchaga C, Craig D, Amin N, Berr C, Lopez OL, De
Jager PL, Deramecourt V, Johnston JA, Evans D,
Lovestone S, Letenneur L, Morón FJ, Rubinsztein DC,
Eiriksdottir G, Sleegers K, Goate AM, Fiévet N,
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S, Velasco-Mart́ın JP, Mart́ın Orozco R, Luengo E,
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